摩登3注册网站_全球“缺芯难题”延续:严重危及路由器生产

众所周知,路由器是连接两个或多个网络的硬件设备,在网络间起网关的作用,是读取每一个数据包中的地址然后决定如何传送的专用智能性的网络设备。它能够理解不同的协议,例如某个局域网使用的以太网协议,因特网使用的TCP/IP协议。这样,路由器可以分析各种不同类型网络传来的数据包的目的地址,把非TCP/IP网络的地址转换成TCP/IP地址,或者反之;再根据选定的路由算法把各数据包按最佳路线传送到指定位置。所以路由器可以把非TCP/ IP网络连接到因特网上。 路由器又可以称之为网关设备。路由器就是在OSI/RM中完成的网络层中继以及第三层中继任务,对不同的网络之间的数据包进行存储、分组转发处理,其主要就是在不同的逻辑分开网络。而数据在一个子网中传输到另一个子网中,可以通过路由器的路由功能进行处理。在网络通信中,路由器具有判断网络地址以及选择IP路径的作用,可以在多个网络环境中,构建灵活的链接系统,通过不同的数据分组以及介质访问方式对各个子网进行链接。路由器在操作中仅接受源站或者其他相关路由器传递的信息,是一种基于网络层的互联设备。 近几个月,全球缺芯危机从汽车行业蔓延到了智能手机等其他行业,现在又危及路由器。据财联社报道,电信运营商的路由器订单已经延误了60周,是以前的两倍多。问题在于,如果没有路由器,电信运营商无法增加新订户,就可能在竞争日趋激烈的宽带市场失去机会,这也是这些运营商如此紧张的原因。 自去年9月美国实施芯片限令后,全球芯片供应链受到扰乱,美国芯片行业发展也遭到了严重的反噬。有声音指出,如今看来“美国也经不起制裁”。 目前全球性缺芯问题严重,对于整个产业链的影响也十分巨大。 由于芯片供应短缺的缘故,美国福特汽车和通用汽车4月8日分别增加三个工厂到停工停产名单。 早前通用宣布因缺芯削减北美数家工厂的产量。据报道,因芯片短缺,通用汽车削减了北美数个工厂的产量。通用汽车预计本次减产将对本年营业收入造成15亿-20亿美元的损失,减产的影响将会计入公司本年的财务报表中。 据《日经亚洲评论》4月8日报道,由于全球零部件短缺,部分MacBook和iPad的生产已被推迟。这一现象表明,即便是对供应链拥有强大掌控能力的苹果,也无法避免这场“前所未有”的供应危机的影响。 报道援引知情人士称,缺芯已导致生产MacBook的一个关键步骤延迟,即在最终组装前需要先将零部件安装在印刷电路板上。与此同时,由于因为缺乏显示器和显示器部件,一些iPad生产也被推迟。 事实上,这种情况比我们预知的要早很多。中国台湾路由器制造商合勤科技(ZyXEL Communications Corp)的欧洲地区业务主管Karsten Gewecke表示,自今年1月以来,博通芯片等零部件的交货时间翻了一番,长达一年乃至更久。美国网络设备制造商Adtran也表示近几个月存在严重的供应链风险和交货期延长的情况。 据外媒报道,宽带供应商目前在订购互联网路由器时正遭遇长达一年多的交付延迟,这令其成为芯片短缺扼杀全球供应链的又一受害者。同时,这也给数百万仍在居家办公的人士带来了挑战。 知情人士透露,一些运营商的报价订单交付期限长达60周,比之前的等待时间翻了一倍不止。 中国台湾路由器制造商合勤科技(ZyXEL Communications Corp)的欧洲地区业务主管Karsten Gewecke表示,对家庭宽带设备的更新需求持续飙升,加剧了因疫情导致的供应短缺。他指出,自1月以来,公司已要求客户提前一年订购产品,因为自那时起,博通芯片等零部件的交货时间翻了一番,长达一年乃至更久。 美国网络设备制造商Adtran也警告客户,近几个月存在严重的供应链风险和交货期延长。该公司发言人在电子邮件中说,公司扩大了在英国的仓库设施,将库存和物流能力增加了一倍以上,以避免出现问题。 而在供应商方面,博通CEO陈福阳(Hock Tan)上个月曾表示,该公司2021年约九成芯片货源已被预订。 值得注意的是,由于路由器的利润率远低于智能手机和电脑,所以半导体代工厂在分配有限产能的时候将路由器的生产暂时搁置了,集中主要的产能来生产手机和电脑。 值得一提的是,在半导体代工厂努力分配有限产能的过程中,那些利润较低的工作往往被推到了更后面。而显然,路由器的利润率远低于智能手机和电脑。 Karsten Gewecke指出,还没有路由器制造企业的存货完全耗尽,但供应链在未来6个月似乎还很紧张,因此存货耗尽的情况有可能会发生。他表示:“我们的存货很多次面临耗尽。这种情况仍会发生。” 因为芯片供应商的交货周期已超过1年,所以该公司在1月已经要求客户提前1年订货。 美国网络设备制造企业Adtran也警告称,近几个月存在供应链风险,且交付周期延长。 半导体晶圆代工企业正在努力分配稀缺的产能,把盈利较低的产品押后生产,而路由器的利润率比智能手机和电脑的利润低。在路由器领域,东欧等不那么富裕的市场使用的是精密程度和利润率都较低的部件。同样,规模较小的通信运营商受到的打击最大。全球企业都在运用自身的购买力来争夺供应。 难以恢复的不仅仅是制造能力,晶圆和封装衬底的短缺加剧了这个问题。理查德补充说,这对汽车行业的打击尤其严重,台湾的干旱和日本一家工厂的火灾可能会加剧该行业的困境。 许多供应最短缺的芯片,包括那些面向汽车行业的芯片,都是用旧工艺制造的。许多晶圆厂在接近其容量极限的情况下运行它们,这意味着系统中没有太多的闲置空间。 在其他行业,这样的短缺问题更容易解决——客户只需向其他制造商下订单,就能满足暂时的需求激增。但汽车制造商不太可能联系新的供应商,因为需要大约三到六个月,有时更久,才有资格从新工厂获得芯片。半导体制造商不太可能建立新的晶圆厂来满足可能是暂时的需求激增。最后,对双方来说,最好的办法是推动现有晶圆厂增加产量。 此次困境给全行业敲响了警钟,并有望推动产业未来的重塑和优化。工信部副部长辛国斌表示,近期汽车芯片供应短缺既是全球共性问题,也反映出我国自主供给能力不足的深层次矛盾。汽车芯片是关乎产业核心竞争力的重要器件,需要统筹发展和安全,坚持远近结合、系统推进,提升全产业链水平,有力支撑汽车和半导体产业高质量发展。

摩登3测速登录地址_射频收发器在数字波束合成相控阵中实现强制杂散去相关性

简介 在大型数字波束合成天线中,人们非常希望通过组合来自分布式波形发生器和接收器的信号这一波束合成过程改善动态范围。如果关联误差项不相关,则可以在噪声和杂散性能方面使动态范围提升10logN。这里的N是波形发生器或接收器通道的数量。噪声在本质上是一个非常随机的过程,因此非常适合跟踪相关和不相关的噪声源。然而,杂散信号的存在增加了强制杂散去相关的难度。因此,可以强制杂散信号去相关的任何设计方法对相控阵系统架构都是有价值的。 在本文中,我们将回顾以前发布的技术,这些技术通过偏移LO频率并以数字方式补偿此偏移,强制杂散信号去相关。然后,我们将展示ADI公司的最新收发器产品,ADRV9009,说明其集成的特性如何实现这一功能。然后,我们以测量数据结束全文,证明这种技术的效果。 已知杂散去相关方法 在相控阵中,用于强制杂散去相关的各种方法问世已有些时日。已知的第一份文献1可以追溯到2002年,该文描述了用于确保接收器杂散不相关的一种通用方法。在这种方法中,先以已知方式,,修改从接收器到接收器的信号。然后,接收器的非线性分量使信号失真。在接收器输出端,将刚才在接收器中引入的修改反转。目标信号变得相干或相关,但不会恢复失真项。在测试中实现的修改方法是将每个本振(LO)频率合成器设置为不同的频率,然后在数字处理过程中以数字方式调谐数控振荡器(NCO),以校正修改。文献里还提到了若干其他方法2, 3。 多年以后,随着完整的收发器子系统被先进地集成到单个单片硅片当中,收发器产品中的嵌入式可编程特性为实现以下文章描述的杂散去相关方法提供了可能:“Correlation of Nonlinear Distortion in Digital Phased Arrays:Measurement and Mitigation”(数字相控阵中的非线性失真:测量与缓解)。1 实现杂散去相关的收发器功能 图1所示为ADI公司收发器ADRV9009的功能框图。 图1.ADRV9009功能框图 每个波形发生器或接收器都是用直接变频架构实现的。Daniel Rabinkin的文章“Front-End Nonlinear Distortion and Array Beamforming”(前端非线性失真与阵列波形合成)详细地讨论了各种直接变频架构。4 LO频率可以独立编程到各IC上。数字处理部分包括数字上/下变频,其NCO也可跨IC独立编程。Peter Delos的文章《A Review of Wideband RF Receiver Architecture Options》(宽带射频接收器架构的选项)对数字下变频进行了进一步的描述。5 接下来,我们将展示一种方法,可以用于在多个收发器上强制杂散去相关。首先,通过编程板载锁相环(PLL)偏移LO的频率。然后,设置NCO的频率,以数字化补偿施加的LO频率偏移。通过调整收发器IC内部的两个特性,进出收发器的数字数据不必在频率上偏移,整个频率转换和寄生去相关功能都内置在收发器IC中。 图2所示为具有代表性的波形发生器阵列功能框图。我们将详细描述波形发生器的方法,展示波形发生器的数据,但该方法同样适用于任何接收器阵列。 图2.通过编程波形发生器阵列的LO和NCO频率,强制杂散去相关 为了从频率角度说明概念,图3展示了一个带有来自直接变频架构的两个发送信号的示例。在这些示例中,射频位于LO的高端。在直接变频架构中,镜像频率和三次谐波出现在LO的相对侧,并显示在LO频率下方。当将不同通道的LO频率设置为相同的频率时,杂散频率也处于相同的频率,如图3a所示。图3b所示为LO2的设置频率高于LO1的情况。数字NCO同等地偏移,使RF信号实现相干增益。镜像和三次谐波失真积处于不同的频率,因此不相关。图3c所示为与图3b相同的配置,只是RF载波添加了调制。 图3.用频率显示杂散信号的光谱示例。三个示例:(a) 无杂散去相关的两个组合CW信号; (b) 强制杂散去相关的两个组合CW信号;以及 (c) 强制杂散去相关的两个组合调制信号。 测量结果 组装了一个基于收发器的8通道射频测试台,用于评估相控阵应用的收发器产品线。评估波形发生器的测试设置如图4所示。在该测试中,将相同的数字数据应用于所有波形发生器。通过调整NCO相位实施跨通道校准,以确保射频信号在8路组合器处同相并且相干地组合。 图4.波形发生器杂散测试设置 接下来,我们将展示测试数据,比较以下两种情况下的杂散性能:一是将LO和NCO都设为相同的频率;二是偏移LO和NCO的频率。所使用的收发器在一个双通道器件内共用一个LO(见图1),因此对于8个射频通道来说,共有4个不同的LO频率。 在图5和图6中,收发器NCO和LO都设置为相同的频率。在这种情况下,由镜像、LO泄漏和三次谐波产生的杂散信号都处于相同的频率。图5所示为通过频谱分析仪测得的各发射输出。图6所示为组合输出。在这个特定的测试中,相对于载波以dBc为单位测量的镜像杂散和LO泄漏杂散展现出改善的迹象,但三次谐波没有改善。在测试中,我们发现,三次谐波在各个通道之间始终相关,镜像频率始终不相关,LO频率根据启动条件而变化。这反映在图3a中,其中,我们展示了三次谐波的相干叠加、镜像频率的非相干叠加以及LO泄漏频率的部分相干叠加。 图5.各通道的波形发生器杂散(LO和NCO设为相同的频率) 图6.组合波形发生器杂散(LO和NCO设为相同的频率)。注意,在这种配置中,三次谐波杂散没有改善 在图7和图8中,收发器LO全部设为不同的频率,并且同时调整数字NCO的频率和相位,使得信号相干地组合。在这种情况下,由镜像、LO泄漏和三次谐波产生的杂散信号被强制设为不同的频率。图7所示为通过频谱分析仪测得的各发射输出。图8所示为组合输出。在这个测试中,相对于载波以dBc为单位测量的镜像杂散、LO泄漏杂散和三次谐波杂散开始扩散进噪声,将通道组合起来后,每种杂散都展现出改善的迹象。 图7.各通道的波形发生器杂散(LO和NCO的频率偏移) 图8.组合波形发生器杂散(LO和NCO频率偏移)。注意,在这种情况下, 杂散的频率有所扩散,并且相对于单个通道SFDR,其SFDR有明显的改善 当组合非常少量的通道时,比如在本测试中,杂散的相对水平实际上提高了20log(N)。这是由于信号分量相干地组合并以20log(N)递增,而杂散根本没有组合。在实践中,通过组合大通道阵列和更多通道,改善程度有望接近10log(N)。原因有二。首先,在组合大量信号的情况下,充分扩散杂散以独立考虑每个杂散是不现实的。以1 MHz调制带宽为例。如果规格规定,要在1 MHz带宽内测量杂散辐射,那么最好扩散杂散,使它们相距至少1 MHz。如果无法做到,则每1 MHz的测量带宽都会包括多个杂散分量。由于这些分量将处于不同的频率,所以,它们将不相干地组合,并且在每1 MHz带宽中测得的杂散功率将以10log(N)递增。然而,任一1 MHz测量带宽都不会包含所有杂散,因此在这种情况下,杂散N小于信号N;尽管改进增量为10log(N),但一旦N足够大,使其杂散密度能在测量带宽内容纳多个杂散,则与无杂散信号去相关的系统相比,绝对改善量仍然优于10log(N)——也就是说,改善量将介于10log(N)和20log(N)分贝(或dB)之间。其次,这个测试是用CW信号完成的,但现实信号会被调制,这将导致它们扩散,使得在组合大量信道的情况下,不可能实现不重叠的杂散信号。这些重叠的杂散信号将是不相关的,并且在重叠区域以10log(N)不相干地递增。 当将不同通道的LO设为相同频率时,需要特别注意LO泄漏分量。当两个信号分支相加时,模拟调制器中LO的不完全消除,这是导致LO泄漏的原因。如果幅度和相位不平衡是随机误差,则剩余LO泄漏分量的相位也将是随机的,并且当将许多不同的收发器的LO泄漏相加时,即使它们的频率完全相同,它们也将以10log(N)不相干地叠加。调制器的镜像分量也应如此,但调制器的三次谐波则不一定这样。在少量通道被相干组合的情况下,LO相位不太可能是完全随机的,因此测得数据中展示了部分去相关的原因。由于信道数量非常多,因此,不同通道的LO相位更接近随机条件,并且预计为不相关叠加。 结论 当LO和NCO的频率偏移时,结果会测得SFDR,其清楚地表明,所产生的杂散全部处于不同频率并且在组合过程中不相关,从而确保在组合通道时SFDR能得到改善。现在,在ADI公司的收发器产品中,LO和NCO频率控制已经成为一种可编程的特性。结果表明,该功能可用于相控阵应用,相比单通道性能,可确保阵列级的SFDR改善。 1 Lincoln Cole Howard和Daniel Rabideau,“Correlation of Nonlinear Distortion in Digital Phased Arrays: Measurement and Mitigation”(数字相控阵中的非线性失真:测量与缓解),2002 IEEE MTT-S国际微波研讨会文摘。 2 Salvador Talisa、Kenneth O’Haever、Thomas Comberiate、Matthew Sharp和Oscar Somerlock,“Benefits of Digital Phased Arrays”(数字相控阵的好处),IEEE论文集,第104卷第3期,2016年3月。 3 Keir Lauritzen,“Correlation of Signals, Noise, and Harmonics in Parallel Analog-to-Digital Converter Arrays”(并行模数转换器阵列中的信号、噪声与谐波相关性),博士论文,马里兰大学,2009年。 4 Rabinkin,Song,“Front-End Nonlinear Distortion and Array Beamforming”(前端非线性失真与阵列波形合成),Radio and Wireless Symposium (RWS) 2015 IEEE。…

摩登3娱乐登录地址_CEVA推出第二代SensPro系列高性能可扩展传感器中枢DSP,扩展在该领域中的领导地位

· 与相同工艺节点的第一代SensPro相比, SensPro2™的计算机视觉性能提高了六倍,AI推理能力提高了两倍,功耗则降低20% · 全新低功耗入门级SensPro2 DSP用于语音助手、自然语言处理和空间音频之AI网络的性能相比CEVA-BX2 DSP提高了十倍 · 具有高精度浮点功能的SensPro2 DSP可用于汽车,适用于动力总成电池管理和雷达系统 CEVA,全球领先的无线连接和智能传感技术的授权许可厂商宣布推出用于AI和DSP中枢处理工作负荷的第二代SensPro DSP系列,涵盖包括摄像头、雷达、LiDAR、飞行时间、麦克风和惯性测量单元(IMU)的多种传感器。SensPro2™系列建立在CEVA业界领先的传感器中枢DSP领先地位上,在相同的工艺节点上,为计算机视觉提供了六倍DSP处理性能提升,为雷达处理提供了八倍DSP性能提升,并在AI推理性能方面提升了两倍,其功率效率相比前代产品提高了20%。 SensPro2系列已经扩展到包括七个矢量DSP内核,可在功率和性能方面进行扩展。全新入门级内核可满足要求高达1 TOPS AI性能,而高端内核则可达到3.2 TOPS性能。每个SensPro2系列成员均可配置针对个别应用的指令集架构(ISA),用于雷达、音频、计算机视觉和SLAM,并可配置针对浮点和整数数据类型的并行矢量计算单元,从而获得针对特定用例的最高效率传感器中枢DSP。 CEVA研发副总裁Ran Snir表示:“我们的新型SensPro2系列高功效传感器中枢DSP为情境感知设备日益复杂和多样化的AI/传感器工作负荷提供了可扩展的性能、多种精度和高利用率。SensPro2体系是独特的创新架构,其通用ISA在所有SensPro2 DSP之间实现无缝的软件重用性。随着客户越来越多地在产品设计中使用SensPro2内核,他们非常看重这一特性,以及针对特定应用ISA的价值。” SensPro2架构采用了一系列改善性能并提高多任务感测和AI用例的效率的技术升级,例如全新低功耗矢量DSP架构。对于汽车动力总成应用,升级后的浮点DSP具有高精度性能,并通过功能强大的处理器来满足电气化趋势需求。而且,SensPro2架构和内核已通过ASIL B级硬件随机故障和ASIL D级系统故障认证,可以在汽车上使用。在性能方面,SensPro2能够在1.6GHz频率运行为8×8网络推理操作提供高达3.2 TOPS性能,内存带宽是第一代产品的两倍,可以更有效地处理数据密集型全连接层。 第二代SensPro DSP系列成员包括: · SP100和SP50 DSP,分别具有128和64个INT8 MAC。这些DSP具有最小芯片尺寸,并将DeepSpeech2语音识别神经网络的性能与CEVA-BX2标量DSP相比提高了十倍,适用于对话助手、声音分析和自然语言处理(NLP)等音频AI工作负荷。 · 分别具有1024、512和256个INT8 MAC的SP1000、SP500和SP250 DSP,这些DSP在SensPro2系列中具有最高的性能和精度,并为计算机视觉、SLAM、雷达和AI工作负荷提供最佳的可配置性。 · SPF4和SPF2浮点DSP分别具有64和32个单精度浮点MAC。这些DSP针对电动汽车动力总成控制和电池管理系统进行了优化,并配置了全套Eigen Linear Algebra、MATLAB矢量库以及Glow图形编译器支持。 SensPro2具备广泛的软件基础架构支持以加快系统设计,包括LLVM C/C++编译器、基于Eclipse的集成开发环境(IDE)、OpenVX API、OpenCL软件库以及CEVA深度神经网络(CDNN) 图形编译器,包括用于加入定制AI引擎的CDNN-Invite API、CEVA-CV图像功能、CEVA-SLAM 软件开发套件和视觉软件库、Radar SDK、ClearVox降噪、WhisPro语音识别、MotionEngine传感器融合、Tensor Flow Lite Micro支持和SenslinQ软件框架。

摩登3注册网址_罗德与施瓦茨5G NR协议一致性IMS测试用例通过GCF验证

罗德与施瓦茨(R&S)与MediaTek(MTK)合作,向全球认证论坛(GCF)提交了5G NR协议一致性测试用例,并成功通过验证,这将奠定罗德与施瓦茨公司在IP多媒体子系统(IMS)协议一致性测试领域的领先地位。 GCF已使用移动平台提供商MTK的5G被测设备,成功验证了R&S提交的5G NR协议一致性IMS测试用例。因此现在可以将这些测试用例用于GCF的认证测试。这意味着罗德与施瓦茨IMS测试用例在获得PTCRB验证的仅仅几周后,就取得了新的成就。 为了确保蜂窝设备在不同移动网络中正常工作,它们需要通过GCF或PTCRB认可的测试实验室的认证。在移动设备投入使用之前,此认证都是强制执行的。该认证的部分内容是针对IMS的测试。 R&S在LTE一致性、运营商准入测试以及针对运营商的5G IMS测试中一直保持领先地位。其一致性测试解决方案以久经考验的R&S CMW500协议一致性综测仪为基础,再结合R&S CMX500无线通信综测仪,可以将原有测试系统升级为支持5G NR的全新系统。软件选件R&S CMX-KC621X现在可以在R&S CMX500上增加经过验证的5G IMS测试用例。

摩登3登录网站_智能检测业务指标并确定异常原因,亚马逊云科技推出Amazon Lookout for Metrics

日前,亚马逊云科技宣布Amazon Lookout for Metrics正式可用。这是一项全新的完全托管服务,使用机器学习检测指标中的异常情况,帮助企业诊断问题并确定根本原因。Amazon Lookout for Metrics帮助客户以更快的速度、更高的准确度监控业务中的重要指标,如收入、网页浏览量、活跃用户、交易量和移动应用安装等。客户无需机器学习经验,即可通过该服务更容易地诊断异常现象发生的根本原因,如收入意外下降、购物车的高弃购率、支付交易失败高峰、新用户注册增加等。Amazon Lookout for Metrics没有预付费用或最低承诺费用,客户只需为每月分析的指标数量付费。欲深入了解亚马逊云科技在AI/ML方面的创新举措以及众多客户利用AI/ML在业务创新和企业转型方面的最佳实践,敬请关注将于4月22日举办的“2021亚马逊云科技 AI在线大会”。 无论规模大小或所属行业,企业往往都会收集和分析指标或关键绩效指标(KPIs),以帮助业务有效且高效地运行。以往,商业智能(BI)工具用于管理来自不同数据源的数据(如存储在数据仓库中的结构化数据,存于第三方平台的客户关系管理数据,保存在本地数据存储的运营指标),并创建用于生成报告、针对检测到的异常发出警报等的仪表板。但有效地识别这些异常是非常有挑战性的。传统的基于规则的方法需要手动处理,且该方法通常将指定数值范围之外的数据视为异常(如每小时交易低于一定数量时发出警报),这会导致如果指定的数值范围太窄会发出错误警报,而范围太广则检测不到异常情况。并且,这些范围也是静态的,不会根据每天的时间段、每周、季节或业务周期等不断变化的条件而变化。当检测到异常时,开发、分析和业务人员在采取行动之前可能会花费大量时间,尝试找出导致异常的根本原因。基于机器学习的解决方案能够解决以上传统基于规则方法带来的诸多挑战,因为机器学习可以从大量信息中进行模式识别,快速识别异常,并基于商业周期和季节等因素动态地调整。然而,从无到有开发机器学习模型需要一个数据科学家团队,他们需要花费大量时间构建、训练、部署、监控和微调机器学习模型。此外,一个单一的算法很难满足企业的所有需求,这将导致企业花费更多的时间和费用来创建和维护多个算法,以应对不同的需求。因此,几乎没有多少企业能够做到既拥有经验丰富的数据科学家,又有足够的资源来淘汰基于规则的方法,而充分实现机器学习在指标异常检测方面的全部潜力。 Amazon Lookout for Metrics是一项全新的机器学习服务,它可以自动检测指标中的异常情况,并帮助客户快速识别根本原因。Lookout for Metrics使用了与亚马逊内部用于检测业务指标异常的相同的技术,现在每个开发人员均可通过Lookout for Metrics使用该技术。客户可以将Amazon Lookout for Metrics与19个流行的数据源建立连接,包括Amazon Simple Storage Service (Amazon S3)、Amazon CloudWatch、Amazon Relational Database Service (Amazon RDS)、Amazon Redshift,以及SaaS应用如Salesforce、Marketo和Zendesk,来持续监控业务的重要指标(如总收入、毛利率、平均购买频率、广告支出回报等)。Amazon Lookout for Metrics自动检查和准备数据,选择最适合的机器学习算法,检测异常,将相关异常分组,并总结潜在的根本原因。例如,如果一个客户的网站流量突然下降,Amazon Lookout for Metrics可以帮助他们快速确定某项营销活动的意外停用是否是主要原因。该服务还可根据预测的严重程度对异常情况进行排序,方便客户确定问题处理的优先级。Amazon Lookout for Metrics可以轻松连接至通知和事件服务,如Amazon Simple Notification Service (Amazon SNS)、Slack、Pager Duty和Amazon Lambda,允许客户创建定制的通知或后续操作,如提交故障通知单或从零售网站删除定价有误的产品。随着服务开始返回结果,客户还可通过亚马逊云科技的控制台或应用程序编程接口(API)提供关于异常检测相关性的反馈,进而不断提高服务的准确性。 “从市场营销和销售到电信和游戏,所有行业的客户都有KPI,他们需要监控潜在的高峰、低谷,以及业务功能正常范围之外的其他异常情况。但是,捕捉和诊断指标中的异常很有挑战性,并且等到确定了根本原因时,可能已经造成了比如果及早发现大得多的损失。”亚马逊云科技全球机器学习副总裁Swami Sivasubramanian表示,“我们很高兴推出Amazon Lookout for Metrics这一易用的机器学习服务,利用亚马逊自身在大规模、准确和快速检测异常方面的经验,帮助客户监控其至关重要的业务指标。” 客户可直接通过亚马逊云科技控制台使用Amazon Lookout for Metrics服务,也可通过亚马逊云科技合作伙伴网络(APN)中的相关合作伙伴来帮助其实施使用该服务的定制解决方案。该服务与Amazon CloudFormation兼容,符合欧盟通用数据条例(GDPR)的要求。Amazon Lookout for Metrics现已在美国东部(弗吉尼亚北部)、美国东部(俄亥俄)、美国西部(俄勒冈)、欧洲(爱尔兰)、欧洲(法兰克福)、欧洲(斯德哥尔摩)、亚太地区(新加坡)、亚太地区(悉尼)和亚太地区(东京)区域正式推出,其它区域也将很快推出。 DevFactory是一家总部位于迪拜的全球企业软件和服务解决方案提供商。“我们的旗舰产品是Quantum Retail,为成千上万的零售客户提供智能零售供应链管理和库存优化解决方案。客户的销售数据是波动的,会受到商店、产品和部门等类别数以百万计的日常事件的影响,这些事件又会每年、每月和每天发生季节性的变化。理解销售模式,并将异常销售与季节性变化区分开来,对于准确预测和规划下游库存至关重要。” DevFactory首席执行官Rahul Subrananiam 表示,“我们现有的解决方案依赖于统计模型,经常无法检测到跨商店的异常销售行为,导致库存分配过剩或不足,进而显著影响整体收入和客户满意度。有了Lookout for Metrics,我们实现了通过几次点击自动监控所有重要类别的数据,识别出之前错过的近40%的异常事件。通过快速识别这些异常,我们能够以最佳方式调整我们的库存计划和所有门店的分销。” Digitata智能地变革了移动运营商在定价和管理用户方面的行为,使运营商能够做出更好、更明智的决策,以满足并超越业务目标。“在Digitata,真正重要的是让每个人都能以负担得起的价格上网。这需要对经济学有深刻的理解,特别是供需和客户行为的变化。”Digitata首席技术官Nico Kruger表示。“通过Lookout for Metrics,我们能够在几分钟内发现一个对移动网络运营商用户的定价产生负面影响的问题。我们能够立即识别出根本原因,并在两小时内修复。如果没有Lookout for Metrics,我们将需要花费大约一天的时间来识别和分类问题,并可能会导致收入下降7.5%。Lookout for Metrics使我们能够迅速采取行动,确保我们的定价模式处于最佳状态,帮助我们专注于真正重要的事情——让连接无处不在。” Marcaide创建了Flywire,旨在确保高价值的国际支付能够快速、顺利地进行,既适用于个人,也适用于医疗、教育和旅游等多个行业的机构。“在Flywire,我们的工程师依赖于全面的监测系统。随着我们的发展,他们经常会收到误报警,浪费了他们追踪这些不良线索的时间。”Flywire基础设施技术主管Omar Lopez表示,“通过Amazon Lookout for Metrics解析CloudWatch的事件,我们能够在一个下午就投入生产,并将误报率降低了7倍。这让我们的站点可靠性工程师专注于警报本身,并为我们提供工具来解决未来更复杂的运营和业务问题。” Wipro是一家全球IT咨询和系统集成服务公司,为全球金融服务、零售、消费品等行业的企业开发和实施解决方案。“对我们来说,Amazon Lookout For Metrics是一项自主服务,为客户提供对安全和业务数据的关键洞察,帮助他们在云中脱颖而出。” Wipro亚马逊云科技事业部总经理兼全球主管Manish Govil博士表示,“Lookout for Metrics不仅减少了我们的开发工作,还大大减少了在客户工作负载中开展异常检测所需的时间。它还使我们能够近乎实时地分析历史和连续的数据流,使我们能够从客户的运营和业务数据中及时发现并消除异常。我们很高兴能为我们的客户带来这项亚马逊云科技的服务,帮助他们在云中规模化实现人工智能驱动的业务成果。”

摩登3平台登录_TI首款具有集成式有源EMI滤波器的先进直流/直流控制器发布支持工程师实现更小的低EMI电源设计

北京(2021年4月7日)– 德州仪器(TI)今日推出了全新的同步直流/直流降压控制器系列,此类器件支持工程师缩减电源解决方案的尺寸并降低其电磁干扰(EMI)。LM25149-Q1和LM25149采用集成式有源EMI滤波器(AEF)和双随机展频(DRSS)技术,使工程师能够将外部EMI滤波器的面积减半,在多个频带上将电源设计的传导EMI降低多达55 dBµV,或者同时缩减滤波器尺寸和降低EMI。 降低电源中的EMI是一项日益严峻的设计挑战,尤其是随着高级驾驶辅助系统(ADAS)、汽车信息娱乐系统与仪表组、楼宇自动化以及航空航天和国防设计中电子元件的增加,降低EMI已迫在眉睫。以前,确保设计符合传导EMI规格的方法是增加外部无源EMI滤波器的尺寸,这反而增加了电源解决方案的整体尺寸。通过集成式有源EMI滤波器,LM25149-Q1和LM25149降压控制器使工程师能够满足EMI标准,同时提高设计的功率密度。要了解集成式有源EMI滤波器的工作原理,请阅读技术文章《如何通过集成式有源EMI滤波器降低EMI并缩小电源尺寸》。 降低整个CISPR 25 Class 5标准中涉及频谱的传导EMI 国际无线电干扰特别委员会CISPR 25 Class 5标准对汽车环境下的低EMI设计提出了严苛的行业要求。LM25149-Q1和LM25149降压控制器可通过降低多个频带上的传导EMI来帮助工程师满足这些要求。集成式有源EMI滤波器有助于检测并降低150 kHz至10 MHz低频频带上的传导EMI,从而使工程师能够将EMI减少高达50 dBµV(在440 kHz的开关频率下,相对于禁用AEF的设计)或20 dBµV(相对于采用典型无源滤波器的设计)。在这两种设计方案中,DRSS技术都有助于在低频和高频频带上将EMI进一步降低5 dBµV。 为了进一步降低EMI,这两款降压控制器的工作频率均与外部时钟同步,从而帮助工程师在EMI敏感型应用中降低不良拍频。要了解有关降低EMI技术的更多信息,请阅读白皮书《通过节省时间和成本的创新技术降低电源中的EMI》。 在更大程度降低解决方案成本的同时缩小外部EMI滤波器 在开关电源设计中,实现低EMI电源和小解决方案尺寸通常是相互矛盾的。而LM25149-Q1和LM25149降压控制器支持工程师满足具有挑战性的EMI标准,并通过减小无源EMI滤波器的面积和体积来缩减解决方案尺寸。与同类解决方案相比,在440 kHz频率下,工程师最多可以将前端EMI滤波器的面积和体积分别缩减近50%和75%以上。通过减小无源元件的滤波负载,集成式AEF可减小无源元件的尺寸、体积和成本,从而使工程师实现尺寸更小的低EMI电源设计。 LM25149-Q1和LM25149控制器通过实现交错式双相操作以及集成自举二极管、环路补偿和输出电压反馈元件,进一步提高了功率密度,进而降低设计复杂度和成本。工程师还可以利用外部反馈和环路补偿进一步优化其设计。 采用3.5mm x 5.5mm热增强型24引脚VQFN封装的42V LM25149-Q1和LM25149现已预生产,但仅通过TI.com.cn提供。TI.com.cn上同时提供了LM25149-Q1EVM-2100评估模块。TI.com.cn提供了多种付款方式和发货方式。TI预计42V版本的LM25149-Q1和LM25149将于2021年第四季度投入量产。此外,TI正在开发LM25149-Q1和LM25149引脚对引脚兼容的80V版本。

摩登3注册开户_ABLIC推出“S-5701 B系列”TMR传感器IC,不但可以解决磁簧开关的局限性,而且具有耐用、小巧和寿命长的特点

艾普凌科有限公司(ABLIC Inc.)(总裁:石合信正,总部:东京都港区,下称“ABLIC”)推出了“S-5701 B系列”表面贴装隧道磁阻(TMR)传感器IC,这款磁传感器IC具有超低电流消耗、高磁灵敏度、长寿命的特点,工作电流消耗仅为160nA。 “S-5701 B系列”是一种TMR传感器IC。然而,与各向异性磁阻(AMR)或巨磁阻(GMR)传感器IC等其他MR传感器IC不同,它具有高灵敏度和超低电流消耗(160nA)的特点,使其成为一款解决传统磁簧开关局限性的创新产品。 (Magnetic sensors) 磁簧开关的局限性以及解决这些问题的TMR传感器IC的优势 ABLIC为用于检测水平磁场的“小巧、智能、简单”的产品系列增加了一种新的“S-5701 B系列”TMR传感器IC产品,可以提供给寻求磁簧开关替代品的客户。 [S-5701 B系列的主要特点] 1. 使用3.3V电源电压时,IC的平均电流消耗为160nA,约为普通AMR IC电流消耗的六分之一 2. 工作电压范围:1.7至5.5V,工作温度范围为-40至125°C,可满足广泛的工作环境要求 3. 采用超薄TSOT-23-3S封装 4. 可提供BOP = 1.0mT的高磁灵敏度产品 [应用场景] · 替换磁簧开关 [使用该IC的产品举例] · 窗户开关传感器、电子钥匙、烟雾探测器 · 煤气表、水表、智能电表 [S-5701 B系列产品详情] https://www.ablic.com/cn/semicon/datasheets/sensor/tmr-sensor-ic/s-5701-b/ https://www.ablic.com/ ABLIC Inc.自2020年4月30日起成为MinebeaMitsumi Inc.的全资子公司。 免责声明:本公告之原文版本乃官方授权版本。译文仅供方便了解之用,烦请参照原文,原文版本乃唯一具法律效力之版本。

摩登3咨询:_库克谈苹果应用商店佣金高:开发者一视同仁

作为苹果招牌服务类产品,苹果App Store在苹果业务的地位可谓不断攀升,凭借庞大的iPhone用户数量,App Store也成为苹果公司最重要的营销模式。 日前,苹果CEO蒂姆·库克在接受媒体采访时,谈到苹果应用商店佣金问题。他表示,规则对于所有开发者一视同仁, 据了解,去年11月苹果宣布,将从今年1月1日起启动App Store小企业项目——针对年收入不足100万美元的小型企业和小型开发者,将减免部分App Store佣金费用,佣金率从原来30%降至15%,包括所有付费应用收入和应用内购费用。 对此,库克表示,小型企业是全球经济的支柱,也是世界各地创新发展的不竭动力。 (资料图)

摩登3平台注册登录_工信部下架60款APP,涉及全能扫描王、迅捷PDF转换器等

截至2021年2月底,我国国内市场上监测到的APP数量为328万款,比1月增加4万款,这是连续8个月下降以来的首次回升。 其中,本土第三方应用商店APP数量为192万款,苹果商店(中国区)APP数量为136万款。2月,新增上架APP数量13万款,下架应用9万款。 数百万款APP中,总有漏网之鱼,存在侵害用户权益的行为。 据工信部网站公告,3月11日,

摩登3登录网站_OPC UA、TSN和传统工业以太网系统将在未来扮演什么角色?

通过合作实现更大的普适性 OPC UA通过其地址空间形成通用应用接口,而TSN为标准以太网添加实时能力并实现千兆位数据速度。因此,通过发布/订阅(pub/sub)模型将这两种技术结合起来是有意义的,但在工业4.0的背景下,工业通信还有其他可能性。在本次采访中,ADI公司确定性以太网技术部的系统应用工程师Volker Goller提供了一些背景信息。 问:在OPC UA TSN系统中,OPC UA和TSN分别承担哪些任务和功能? 答:为了阐明OPC UA的作用,我想引用OPC基金会副总裁Stefan Hoppe的话:“OPC UA不是一种协议,而是一种信息模型。”他的意思是,OPC UA首先且最重要的是一种信息模型。当然,它还是一种用于连接客户端和服务器的协议,但OPC UA的优势在于地址空间,正是这一点使得OPC UA成为通用应用接口。OPC UA非常灵活,允许将现有用户接口(工业以太网协议的配置文件)映射到OPC UA。因此,现在工业以太网协议中的几乎每个配置文件在OPC UA地址空间中都有表示,或者正在开发以实现其表示。OPC UA尚未明确这些配置文件(I/O、驱动器、安全等),但很可能会改变。在工业4.0的框架下,OPC UA被视为未来非常有前途的通用语言。 相比之下,TSN是IEEE-802.1以太网的扩展,具有完整的一系列新能力,旨在让以太网更具确定性和实时性。因为预计未来将有众多制造商生产支持TSN的硬件,所以也可以把它视为实时通信的平民化。几乎每种协议都可以通过TSN获得实时能力。 在此背景下,成立了一个pub/sub工作组,目的是在TSN的帮助下,为OPC UA指定一种实时传输协议。这将使OPC UA具备实时性,从而可以替代工业以太网协议。它将受到传统PLC以上层次的热烈欢迎,因为来自不同制造商的控制器将能与OPC UA实时交互。TSN还能为OPC UA提供有保证的网络带宽,因而其鲁棒性会比目前所能实现的要更高。 但是,pub/sub不是让OPC UA具备实时能力的唯一途径。业界也在努力开发一种针对DDS的OPC UA模型,DDS是一种应用广泛且经过验证的实时协议。这将使得分布式系统的运行具有DDS/TSN能力,并将OPC UA用作应用接口。 结果如何还有待观察。 问:未来哪些任务和功能会留给传统工业以太网系统和现场总线? 答:传统工业以太网协议不会消失。在未来,有些仍会以不同形式存在(作为OPC UA中的配置文件或配置文件系列),有些则将基于TSN。传统现场总线将被以太网取代。 问:在OPC UA TSN系统中,除了配置文件级别的OPC UA TSN,传统工业以太网系统可以履行哪些任务和功能? 答:需要再次澄清,TSN并不会自动实现OPC UA。它们是两种完全独立的技术。OPC UA可以在控制器网络(控制器到控制器)中发挥重要作用。pub/sub与TSN在这里很有优势;它是否也能在现场层面发挥作用尚有待证实,因为OPC UA不是一个小堆栈,至少如果您希望利用其全部优势,它不会是一个小堆栈。 问:传统工业以太网系统的用户组织如何应对TSN挑战? 答:我想说,所有用户组织都在响应TSN带来的机会。TSN有望提供更多硬件选择,尤其是基础设施组件,并且实现更高速度,即1 Gbps或更高。最终,我们将看到Profinet® TSN,以及EtherNet/IP® over TSN和OPC UA Pub/Sub。 问:TSN能否支持实时并将周期时间降至31.25μs,在未来甚至可能更低? 答:在100 Mbps的速度,要使周期时间低于250μs,现有工业以太网协议将不得不对标准以太网进行重大修改。对于非标准方法,例如EtherCAT®甚至Sercos所基于的集总帧协议,IEEE并不是很友好。这些扩展不大可能被纳入TSN标准。 针对您的问题,TSN将达到IEEE定义的极限,即100 Mbps时250μs——至少只要标准TCP/IP应用的真正并行操作必须有效。如需更短的周期时间,通往1 Gbps的道路已开放。 问:TSN如何解决或预期如何解决安全问题? 答:安全一般运用Black channel原则。安全性定义在实际通信协议之上。然而,通信信道的可靠性是安全考虑因素之一。TSN不会比今天的系统更不可靠。 问:OPC UA协议也可以通过传统工业以太网系统传输,如时隙或隧道。那么为什么它还需要TSN呢? 答:TSN在标准以太网基础上增加了确定性和实时性。在很多情况下,不同的协议共存于同一根电缆中。TSN支持在一根电缆中实现实时和“尽力而为”型TCP/IP的稳健共存。 问:TSN相对于传统工业以太网系统到底有哪些优势? 答:TSN不是一种新的工业以太网协议。它是对标准以太网的统一扩展,增加了实时能力。我们已阐明其优势:硬件可用性、统一基础设施以及与速度无关的定义。 问:成本在这里扮演什么角色? 答:可扩展的标准化硬件和基础设施有望降低成本并统一技术诀窍。 答:1 Gbps(及以上)是当今网络的逻辑进展。它是否会取代100 Mbps?不会完全取代,但是 1 Gbps支持新的应用,并且可以克服当今数据密集型应用的性能瓶颈。 TSN不是一种新的工业以太网协议,而是对标准以太网增加实时能力的统一扩展。