摩登3娱乐登录地址_TP-LINK低调发布首款智能手机

  家用网络产品巨头TP-LINK悄然发布第一款智能手机,我们从网站信息了解到,这款新手机搭载了4.0英寸的显示屏幕,800万像素后置摄像头,支持720P高清摄录,配合双LED闪光灯,有效加强曝光度,1.4GHZ的CPU处理器,内置最新Android 4.0智能操作系统,支持3G高速互联网及WLAN无线局域网接入。 本文引用地址:http://www.eepw.com.cn/article/132235.htm   具体的配置我们尚且不清楚,总之,一贯推崇性价比的TP-LINK这款智能机的价格和性能表现,还要我们拭目以待。

摩登3平台首页_TI车用HID灯集成电路驱动控制芯片CC3305的应用设计

引言 高强度气体放电(HID:HighintensityDischarge)灯实际上包括了一大类采用小型高内压弧光管发光的照明产品,基本上有三种类型:水银蒸气(MV)灯,金属卤化物(MH)灯和高、低压钠(HPS或LPS)灯。HID灯全都按与日光灯相似的放电原理工作:当灯管里充填的气体,如被镇流器提供的电流激活时便会发光。 金属卤化物(MH)灯是为改善水银蒸气灯的亮度、显色性差和效率相对低的特征而设计。MH灯功能非常象水银蒸气灯,但因在灯管内添加了如铊、铟和钠金属的碘化物(卤化物),故比之只有水银蒸气能发放更多和更优质的光。 金卤灯与传统卤素灯也不同,因为灯管内另有一小玻璃球灌满了氙气及少许稀有金属,受电流刺激进行化学反应,就会发出色温高达4000K-12000K的光芒,如图1。车用金卤灯镇流器系统主要由包括从9-16V汽车硫酸铅电池输入的直流-直流变换器,高压点火器,200-400Hz全桥逆变器以及保证稳态功率输出的控制电路4部分组成(图2)。DC/DC变换器须满足在9-16V输入电压范围内能输出直流电60-500V的压,并具有输入过压、输出短路/开路和过流保护功能。点火器的功能是产生瞬间高压20-30KV的击穿灯管放电。全桥逆变器提供200-400Hz全桥功率开关管的驱动信号,完成DC-AC逆变,实现灯管两端电压极性反转,防止灯管单端发黑,延长灯管寿命。控制电路起到保证向灯稳态时提供恒功率输出。稳压时灯管两端的压降约为60-110V,如35W灯管稳态时其功率必须保证在35W±2W范围之内,功率太高的会损坏灯管,缩短灯管使用寿命;功率过低则会降低输出亮度,造成驾车安全隐患。 1 UCC2305简介 UCC3305是德州仪器公司一款针对车用HID灯应用设计的集成电路驱动控制芯片,UCC3305集成了控制和驱动HID灯所需全部功能,既能配合快速打开汽车前灯的要求,也适用其他选择HID灯的照明设备。具有下列符合车用HID镇流器设计的性能要求: ·全桥驱动输出 ·具有输入过压、输出过流及过压保护 ·针对不同灯管电压的恒功率输出控制 ·频率高达300KHz的电流型PWM控制器 ·灯冷、热启动电流可调与正常工作电流控制 ·9-16V输入电压宽工作范围及低至6V的快速启动特性 ·符合汽车电子要求的40°-105°C宽温度工作范围 典型应用电路分析外引脚图,简要说明如下: 5VREF—内部5V基准,UCC3305用于设定电流和门限。也可用于其他功能。 本文引用地址:http://www.eepw.com.cn/article/197213.htm ADJ—该管脚的电压可调整控制冷灯峰值电流与暖灯峰值电流之比。此电压由从ADJ到GND连接的电阻确定。 BAT—用于检测过份高的输入电压并当输入超出某预定电平时关闭集成电路。该管脚与跨接在输入电源与“地”的分压器相连接应。当输入电压超出5V,UCC3305即关闭。非常高或负输入情形下要保护集成电路,分压器阻抗须保持高于10k。 BOOST—尽管UCC3305由输入VCC供电,但器件的多数功能却依赖与BOOST连接近似10V的电源电压。10V电源电压可利用PUMPOUT作AC信号,外接二极管作开关的倍压器产生。 BYPASS—管脚外接储能大电容,提供SLOPEC和WARMUPC管脚处电容器的充、放电。通过SLOPEC和WARMUPC管脚电容器上的电压改变来补尝灯温变化。假定流过BYPASS管脚的最大电流为5μA,放电时间60s,最大许可压降为5V,则BYPASS外接电容可按下式估算: COMP—通常该端口经电容连接到FB端。当灯的指令功率和期望功率之间存在差异时,误差放大器便将次放大。放大器传感到FB和2.5V之间的差别,并以被放大的误差电压驱动COMP对整体反馈环路补偿,以保持系统稳定。 DIVPAUSE—UCC3305的QOUT和QOUT是AC镇流器用于灯极性切换的端口。为使电弧在电极间正确的地方形成,灯点燃后停止极性开关非常重要。抬高DIVPAUSE电位可停止内部分压器产生QOUT和QOUT信号,从而使QOUT和QOUT信号冻结。为此可从NOTON接一电阻至DIVPAUSE和从DIVPAUSE接一电容至GND。 FLTC—因为VOUTSENSE管脚的电压正比于灯电压,故该电压太高或太低,灯将开路,短路或者不工作。正常运行期间,FLTC接有电容并通过UCC3305内部电流源放电至0V。UCC3305监测VOUTSENSE处的电压并与内部低阈83mV和高阈2V比较。只要管脚VOUTSENSE处的电压超出内部高、低阈值窗口,便有约250nA电流拉动FLTC。如故障存在较久,FLTC外部电容充电出超过5V,则表明控制器遭遇灾难性故障而关闭,此状态一直维持到BOOST端去电。 FB—UCC3305内部误差放大器对灯指令功率和期望功率间的差异放大后,传感到FB与2.5V的差并以误差电压驱动COMP。 ISENSEIN—丛该管脚接入电流传感电阻对电池电流做出传感,UCC3305控制器中的功率调整算法对灯的电流和电压进行计算并发出电池电流适合指令以维持灯的功率恒定。 ISET—UCC3305的许多功能都需要对电流精确控制,该管脚连接电阻至GND可对手空电流进行调节。UCC3305的正常工作电流对应的电阻约100k。 LOADISENSE—恰如ISENSEIN接传感电阻监测电池电流,LOADISENSE接传感电阻监测灯的电流。结合VOUTSENSE传感到的灯电压。控制器将给出不同温度下向灯提供的功率。 LPOWER—LOADISENSE直接驱动UCC3305中一个运放的输入,对负载电流预期和实际值之差放大并在LPOWER产生馈送给误差放大器的输出信号。 NOTON—灯处于错误条件之下,如灯电压过份高或低时,NOTON管脚电位将被抬高至VCC。当VOUTSENSE管脚电压在83mV到2V窗口之内时,NOTON电位则被拉低。 OSC—该管脚接电容至GND设定UCC3305中PWM的频率。典型200pF电容的频率为100kHz。 PUMPOUT—虽然UCC3305由VCC供电,但器件的多数功能均从与BOOST连接的近似10V的电源电压取得。该10V电源电压采用PUMPOUT作交流信号与外接二极管作开关的倍压器产生。PUMPOUT输出为摆幅从VCC至GND,频率为OSC频率之半的方波。 PWMOUT—脉宽度调制器的输出。正常系统中,PWMOUT可与N沟功率MOSFET栅极直接连接。 QOUT—振荡器频率的逻辑输出与QOUT相位差180度。 SLOPEC—为跟踪灯的升温和冷却,UCC3305须连接充电和放电两个电容。其一连接SLOPEC,以由ISET接GND电阻控制的速率充电至5V。VCC去电,SLOPEC以标称100nA恒定电流放电。另一连接WARMUPC。 VCC—为UCC3305的主供电电源。一般应通过外接zener二极管钳位于6.8V。 VOUTSENSE—该管脚用于通过120:1分压器传感灯电压,正常运行的HID灯,灯的端电压在60V和110V之间。高于300V灯将击穿,故须限制起辉器输入电压到达600V最大值。灯电压低于10V则表示灯已短路。 WARMUPC—该管脚到GND所接电容的电压可估计灯的温度。灯点亮时,电容先由200nA电流源充电至4.2V,再由100nA电流源从4.2V充电至10V;灯熄灭时,电容先由39nA电流阱放电至2.5V,再由11nA电流阱放电至GND。 WARMUPV—WARMUPC端口的电压用于调制通过FB馈送到误差放大器的信号。但是,直接地使用阻抗太高。UCC3305内含缓冲放大器对WARMUPC电压进行缓冲处理后送至WARMUPV,以使信号适合驱动FB。 2 典型应用电路分析 图4为采用UCC3305构建的车用反激式HID灯镇流器电路。分析讨论如下: 由图可知,镇流器的输出系全桥逆变结构。反激变换器的输出直流通过全桥逆变结构输出级导向交流灯管。该全桥输出级以从PWM振荡器获得的典型195Hz低频切换工作,故平均灯电压为零。UCC3305有一个称NOTON的逻辑输出,灯不运行(NotOn)时为高电平,灯运行时为低电平。因该输出与DIVPAUSE输入相连,故当灯充分点亮后此低频切换便即终止。UCC3305控制集成电路有二个低频输出:QOUT和QOUT,均具有直接以195Hz驱动低端MOSFET的能力。高端MOSFET则需要电平位移驱动。 UCC3305的LPOWER输出是一个大致与灯的输入功率成比例的电压。UCC3305能在灯电压的较大范围内对灯实施恒功率调控。产生灯恒功率的灯电压范围通过对VOUTSENSE端口放大器作限定的方法来设定。 当VOUTSENSE的输入低于0.5V,恰如灯已短路,环路调控负载电流使之恒定。当VOUTSENSE的输入高于0.82V,灯开路或未点燃时发生,环路也对负载电流调控,但小于短路状态。在上述情况之间,驱动LPOWER管脚的放大器将相加负载电流和负载电压并产生大致与负载功率成比例的信号。 UCC3305除包含完整电流型PWM外,内部还包含率斜报偿,一种改进电流环稳定性非常有价值的功能。率斜报偿通过芯片内的锯齿电流和芯片外RSL电阻实现,RSL值越大,给出的斜率补偿越大,反馈环路越稳定。 该典型应用中,UCC3305从6.8V齐纳管取得供电。齐纳管还能以较少元件和加低成本提供过压保护,电池反接保护。齐纳管的输出驱动UCC3305的VCC管脚。VCC输入到UCC3305电荷泵。电荷泵在BOOST输出产生10V已调整电源电压驱动UCC3305的其它所有功能。 考虑到汽车环境里最显着的应力是发生在负载转换和双电池突然启动期间的过压,因为此时进入镇流器的电压可能高得足以使特意设计的功率级受损。采用齐纳管调整的供电电压UCC3305对此种损伤有固有免疫力。另外,当BAT输入处出现过压时,UCC3305还能通过关闭PWM保护镇流器元件。 UCC3305所有电路系统的偏置电流都由ISET到地的电阻设定,该电阻在最佳条件下应在75k至150k间。 HID灯控制器UCC3305中振荡器频率由从ISET到地的电阻和电容设定,振荡器振荡频率可以由下式估算: 振荡频率100kHz时,RSET和COSC分别为100k和200pF。 汽车前灯的光强度必须非常迅速达到全亮,但HID灯需要几分钟才稳定。UCC3305控制器含处理和补尝灯温的复杂内部电路。电路通过监测灯打开时充电,灯关闭时放电的电容器上的电压预测灯温,UCC3305通过以较高的功率驱动冷灯,当灯升温变暖后便将驱动功率减少到正常工作水平的方式补尝灯温。 SLOPEC和WARMUPC管脚外接的电容CS和CW是设置时间常数的元件,选择须与灯的时间-温度关系匹配。除改变功率调整点之外,WARMUPC处电容上电压也能改变灯的短路电流。通过从ADJ到地的电阻可以设置冷灯短路电流与暖灯短路电流之比。 当镇流器去电时,CS和CW须以受控的速率放电。放电电流可利用UCC3305连接在BYPASS端口的电流源调节。典型应用时,BYPASS端口至地接普通电解电容,镇流器工作时充电储能,镇流器关闭时使用所储能量控制放电速率。 OSRAM和SYLVANIA采用该电路制成的35W汽车前灯镇流器,性能指标为 输入电压要求:9-16VDC 启动要求:必须运行启动然后降至6VDC 保护和故障监控:抗输入过压、输出开路和输出短路保护 功率调整:在整个60-100VDC灯电压变动范围,灯功率可调控至+10%之内。 灯点火电压:启动时提供高于500VDC开路电压以点燃灯 效率:大于85% 冷启动:初始启动状态的光输出在SAEJ2009规定范围之内 热限制:无须冷却,镇流器即能将灯妥当点燃 3 结论 通过上面的分析,发现UCC2305是一款非常适合汽车HID灯驱动应用的芯片。它涵盖了HID灯驱动的所有特性,并且工作温度范围是-40°C到+105°C。和其他方案相比具有外围电路简单,设计方便,开发周期短等优点。相信随着HID灯在汽车中的普及,UCC2305会得到更广泛的推广。

摩登3新闻554258:_基于CC2480的土壤温度和水分梯度测量系统

摘要:介绍了一种通过ZigBee无线数据传输方法来自动采集土壤温度和水分梯度数据的测量系统。详细介绍了以MSP430F149为主控制器,通过与ZigBee协处理器CC2480的交互通信,实现土壤温度和水分梯度测量节点的大规模智能化网络布局。最终数据采集节点通过GPRS公共信道或有线传输至数据接收终端。与传统的单点地表测量系统相比,本测量系统具有布置灵活、自动连续、低功耗、测量结果精度高等特点,为农田监测、水土保持、环境保护等领域提供了可靠、有效的监测手段。关键词:ZigBee;水份梯度;MSP430F149;智能化;CC2480 引言 长久以来,土壤的温度、水分一直是农业研究领域的重点研究对象。作为土壤的两大基本属性,土壤温度、水分的细微变化都会对农作物的生长产生极大的影响。很多研究表明,在土地水土保持、农业节水灌溉、土壤的肥力调配、大范围的局地性气候变化和生态环境保护诸多研究领域中,土壤温度、水分的时空性变化也是极为重要的两个参考性因素。因此,在农业、环境科学、气象等多个研究领域中,都把土壤温度、水分作为研究观测的基本对象。 由于我国的地理环境情况复杂,各地区数据观测水平参差不齐,导致土壤温度、水分的数据来源比较匮乏,数据汇总难度较大。传统的测量方式获取的土壤温度和水分数据,在测量精度、数据采集量、可靠性方面远远不能满足现今高精度、网络化、智能化的测量需求。与此同时,传统的土壤温度、水分测量仪器也只能测得单一的土壤表层的温度、水分数据,缺乏能够在大范围区域和土壤的垂直梯度方向上完整、实时、自动连续测量土壤温度、水分的方法和仪器。 随着现代工业自动化技术的不断进步,ZigBee无线通信技术的发展日益成熟,其被广泛应用于无线传感器测量网络、自动气象站、智能交通、智能家居等众多领域。ZigBee无线通信技术的低功耗、短距离、低成本、布网灵活等特点十分适合用于需要自动连续采集数据、局域分布测量、大范围联网数据处理的测量场合。通过ZigBee无线网络可以方便地实现多个土壤温度、水分传感器的分散布局,从而可以方便地实现土壤测量参数的收集处理。 1 系统设计原理及结构 系统的前端数据采集包括土壤温度、水分传感器若干组,具体根据测量的区域范围大小来定。每组传感器在待测土壤垂直梯度方向上以每隔20 cm间距依次布局7~8个左右的传感器。在待测土壤区域垂直挖掘出一个深度d≥1.5 m的圆柱形深坑。同时将传感器通过类似于卡座固定于直径小于深坑的不锈钢圆管之中,在埋置不锈钢圆管时先在管外埋土,最后往不锈钢圆管内注入土壤。传感器梯度埋设如图1所示。 本文引用地址:http://www.eepw.com.cn/article/194710.htm 土壤温度和水分传感器信号分别经过前端信号的放大和采样电路送至各个传感器节点上的模数转换通道进行A/D转换。为了实现多路的土壤梯度温度、水分测量,传感器节点通过单片机引脚信号来控制多路模拟开关,实时自动选择所需转换的通道。 每组传感器节点自动地建立一个网络,整个无线网络拓扑选用星型网络结构,该网络结构方便、可靠,可由中心采集节点完成对周围传感器节点的数据集结。在自建立网络完成后,传感器节点与采集节点建立绑定关系,周期性的向采集节点发送数据。传感器节点在固定时间内没有收到采集节点的应答消息时能自动重组网络,重新寻找新的采集节点。同时,可通过全功能路由节点来实现数据的接力传递,来扩大整个数据采集范围。最终采集节点将数据进行内部存储,对所得数据进行相关的校正处理,提升其测量精度,得出理想可靠的实时数据。按照行业规范的统一数据传输格式调制数据,最终通过GPRS模块或者RS232/RS485通信接口传送至数据显示终端进行观测分析。系统结构图如图2所示。 上一页 1 2 3 下一页

摩登3主管554258:_基于Video Port的Camera Link的图像采集接口设计

摘要:通过视频接口和Channel Link芯片实现了数字信号处理芯片TMS320DM642与Camera Link线扫描相机的无缝连接。解决了图像数据输出速度为40 MB/s的高速图像数据采集系统中,前端采集与后端输出的速度匹配问题。系统可实时、高速地采集大量的图像数据。关键词:Camera Link;TMS320DM642;视频接口;视频采集 图像采集的运用非常广泛,经过几十年的发展,采集技术有了很大程度的进步。目前的专业采集设备集成度更高,分辨率更大,传输速度更快,针对性更强。 本文以DALSA公司的Spyder2系列线扫描相机为图像采集源,以TI公司的TMS320DM642多媒体处理器为核心,实现高速图像的采集和处理任务。 Spyder2线扫描相机以其高速的采集速度和先进的Camera Link接口,已广泛应用于工业生产线等领域。本方案集合了Camera Link和TMS3 20DM642的优点,缩短了设计周期,降低了难度,提高了设计的效率和设计质量。 1 总体概述 Camera Link是一种基于视频应用发展而来的通信接口标准,Camera Link接口采用National Semiconductor公司的Channel Link技术,其最高速率可达2.38 Gbps。Camera Link相机和图像采集设备之间采用LVDS信号传输,从而简化了图像采集设备和模拟摄像头之间所必需的视频编解码等步骤,降低了生产成本和维护费用。 TMS320DM642作为多媒体处理器,内置3个专用的视频数据接口(Video Port)。每一视频接口有20位数据总线,可以在8位、10位、16位总线方式下进行视频采集或视频显示。采集频率最高可达80 MHz。 DALSA Spyder2相机采用单通道Channel Link输出,每线输出2048像素,每个像素8位。为了图像处理的方便,采集接口将视频数据重整为完整帧并缓存于SDRAM中。TMS320DM642的Video Port接口设置为8位的RAW Data采集模式。总体结构如图1所示。DALSA Spyder2相机采集到的视频信号通过Video Port0传输到SDRAM中缓存,DM642再通过EMIFA从SDRAM中读取每帧图像进行分析处理。 本文引用地址:http://www.eepw.com.cn/article/194883.htm 2 关键硬件设计2.1 视频解串电路 Camera Link标准中,相机的信号被分为3种:视频数据信号、相机控制信号、串行通信信号。 视频解码部分采用National Semiconducor公司TSSOP-56封装的DS90CR288A接收器来完成,它能够将4路LVDS串行数据流转换为2位并行TTL/CMOS数据,在传输时钟CLK的每个周期,将28位并行数据输出。 DS90CR288A解码出的TTL/CMOS信号可以分成2类:图像信号和图像时钟信号(WCLK)。其中图像信号又由24位图像数据信号和4位图像同步信号组成,这些信号都符合Channel Link技术标准。 图像同步信号包括:FVAL(Frame Valid)、LVAL(Line Valid)、DVAL(Data Valid),分别为帧有效信号、行有效信号和数据有效信号。当FVAL、LVAL、DVAL同时有效(为高电平时),表示相机正在输出有效的图像数据。Channel Link的图像同步信号和时钟信号的关系如图2所示。 上一页 1 2 3 4 下一页

摩登三1960_Marvell发布新款Link Street交换机

        全球整合式芯片解决方案的领导者美满电子科技(Marvell,Nasdaq交易代码:MRVL)日前发布三款Link Street®以太网系列新品,为低成本、能耗敏感的应用提供了快速以太网和千兆以太网解决方案。Marvell® 88E6352、88E6250和88E6220均集成了物理层(PHY)芯片,支持802.3az节能以太网(Energy Efficient Ethernet,EEE)标准,以及其他多个先进的功能,包括局域网唤醒(Wake-on-LAN,WoL)、集成的开机热启动(Power-On Reset)控制器和电源监视器。         此外,新设备还支持IEEE 802.1新的语音视频桥接(AVB)标准,可以无缝交付延时敏感的多媒体流量,在容易配置的以太网中实现消费级和专业级的语音视频应用。它们还支持IEEE 1588v2 PTP精确时钟协议(Precision Time Protocol)标准,实现以太网上节点之间1毫秒以内的时钟同步。         这一新的系列产品主要面向包括无线路由器、网关和企业网络接入在内的公共云和私有云接入市场,为它们提供高成本效率和能源效率解决方案,同时扩展以太网的能力,满足云内部应用中以媒体为中心的应用需求,例如:机顶盒、数字录像机、音频/视频接收器等等。 新闻要点  用AVB创建面向连接的以太网,为多媒体内容提供时间和带宽保证  高能效和高性能对实现成本效率高的云服务、对云网络规模的扩大至关重要  封装中集成了电压调节,节省空间,优化成本,降低了系统成本  正在生产设备样机,预计2011年第三季度实现量产 产品亮点 88E6352  7端口千兆以太网交换机,具有5个集成的三速PHY、GMII、RGMII和Serdes/SGMII接口  集成的PHY,支持802.3az节能以太网(Energy Efficient Ethernet),当网络空闲时可以降低能耗70%以上  支持最新的AVB标准  256个条目TCAM,提供多达96字节深度的包检测  支持IEEE 1588v2工业以太网应用  低成本128引脚QFP(14×14毫米)封装 88E6250和88E6220  88E6250是一个7端口的快速以太网交换机,具有5个有集成的快速以太网 PHY和两个RMII(或一个MII/RGMII)接口  88E6220是一个4端口的快速以太网交换机,具有2个有集成的快速以太网PHY和两个MII/RMII接口  集成的PHY,支持802.3az节能以太网(Energy Efficient Ethernet),当网络空闲时可以降低能耗50%以上  支持最新的AVB标准  支持IEEE 1588v2工业以太网应用  64引脚QFN(9×9毫米)封装,是当前市场上体积最小的7端口快速以太网交换机 交换机相关文章:交换机工作原理

摩登3注册网址_基于CC1101的分布式节能测控网络设计

摘要:设计并实现了一种基于无线收发器芯片CC1101的测控网络,简要介绍了网络中链路层协议的工作机制及相应硬件电路设计;详细分析了使用CC1101进行无线通信时的节能设计和防冲突设计原理,计算并给出了CC1101的有关内部寄存器的取值,同时也说明了使用PIC单片机PIC18F66J60进行局域网互连的软硬件设计方法;介绍了最终系统的实现情况及应用前景。关键词:CC1101;节能;网络;PIC18F66J60 本文引用地址:http://www.eepw.com.cn/article/195105.htm 引言 CC1101是TI公司生产的一种单片、低成本的UHF频段无线收发器,基于IEEE 802.15.4标准开发,主要应用领域为低功耗无线测控。芯片具有无线电唤醒(WOR)、数据包处理、数据缓冲、突发数据传输、清晰信道评估、链接质量指示等功能,内部的参数寄存器和数据传输FIFO可通过SPI接口控制,所需的周边器件很少,使用简单。受限于发射功率和天线结构,CC1101的视距传输距离一般在400~800 m范围内,超出此距离范围则必须由中继设备对无线信号进行放大、转发。本文设计的一种分布式无线测控系统通过局域网对中继设备进行互连,大大降低了系统的无线通信协议复杂性,同时达到了使用无线通信时伴随的低功耗设计要求,具备很强的实际工程应用价值。 1 总体设计方案 测控网络采用3级结构,网络拓扑结构如图1所示。 最底层的测控基站负责进行工作现场的数据采集和控制指令的执行,测控基站上安装有无线收发器芯片CC1101和天线,通过空中无线信道与中继节点通信。测控基站采用电池供电。 中间层的中继节点负责接收中心计算机发出的控制指令,向底层的测控基站转发,或者接收底层测控基站发出的测量数据,向中心计算机转发。中继节点上安装有无线收发器芯片CC1101和天线,通过空中无线信道与底层的测控基站通信;同时中继节点也具备访问局域网的功能,可以通过外部局域网与中心计算机通信。中继节点采用市电经AC—DC模块变换出的直流电压供电。 中心计算机负责采集所有测控基站的测量数据,进行数据管理,也可以向测控基站发出控制指令。中心计算机通过网络接口连接到外部局域网,与中继节点通信。中心计算机采用市电交流供电。 2 通信协议总体设计 中继节点与中心计算机通过有线局域网通信,类似协议工程上有比较成熟的方案,本文不再详述。 中继节点与测控基站的无线链路层协议涉及到防冲突、节能等问题,直接关系到系统可靠性、可用性指标最终实现,是系统通信协议设计的重点。 系统中依靠无线信道传输的数据归结为4种,简述如下: ①命令帧。当中继节点向测控基站下传控制指令时发出。 ②基站应答帧。当测控基站收到中继节点下传的控制指令后,需要向中继节点返回一个基站应答帧,告知指令执行情况。 ③中继应答帧。当测控基站向中继节点上传状态信息后,中继节点需要向测控基站返回一个中继应答帧,告知已经收到状态信息。 ④测量帧。当测控基站测量到的工作现场数据发生改变后,必须向中继节点发出测量帧,通知中继节点向中心计算机声明更新对应测控基站的记录信息。 为了简化处理流程,系统中传输的所有的数据的帧格式统一采用如下所示的固定长度12字节的格式。 tcp/ip相关文章:tcp/ip是什么 上一页 1 2 3 4 下一页

摩登3注册平台官网_利用AS358设计的恒流恒压(CC/CV)电路设计

 恒流恒压电路是利用AS358做电压、电流信号的采样和放大,电路如图3所示,分为两部分,一部分是恒流环:采样电阻Rs采样输出电流Io,经过AS358_1进行放大,放大倍数由R2/R1决定(R1=R3,R2=R4),放大后的信号通过二极管D1送到AP3003的FB管脚;另一部分是恒压环:电阻RA和RB采样输出电压Vo,经过AS358_2和二极管D2送到AP3003的FB管脚 根据 ,可以得到恒流点和恒压点的计算公式(E-1)和(E-2):  本文引用地址:http://www.eepw.com.cn/article/179994.htm (E-1) (E-2)   其中VD1,VD2分别是二极管D1和D2的正向导通电压,VREF是AP3003内部的基准电压,根据设计要求可以选择合适的Rs,R2,R1,RA,RB和二极管,得到恒流点为750mA恒压点为5V的车载充电器系统,实验测试结果如图4所示 图3 利用AS358设计的恒流恒压(CC/CV)电路 图4 V-I特性曲线

摩登3咨询:_开放式现场总线CC-Link在灯泡自动生产线中的应用

1、设备工艺要求 (1)蒸铝机上有10台蒸铝小车,每台小车可灵活上线和下线,每台小车的编号、真空度、车位等相关信号在上位机显示,并与主传送带有连锁信号,即满足工艺要求的灯碗由主传送带送往下一工序。(2)铆钉机、蒸铝机、组装机、烘装机、涂胶机的传动控制系统要满足同步定位要求,即铆钉机每3秒转1个工位、蒸铝机每27秒转1个工位、组装机每3秒转1个工位、烘装机每3秒转1个工位、涂胶机每9秒转1个工位,这5台设备上的位置状态和主传送带、传送带1、传送带2的位置状态有连锁信号,以便控制机械手的动作。(3)该系统所有控制设备的状态和参数均在上位机显示和相应的操作。(4)故障及报警连锁分为两类,第一类故障报警为系统设备全停,第二类故障报警时,只为本设备停机,故障处理完成后,此设备恢复运行。(5)恢复运行需要自动跟踪系统的同步节拍,同步后才能启动该设备的功能动作。以下是该生产线的设备布置简图(1) 2、控制系统的配置设计简介 按以上设备工艺对控制系统的要求,对目前的几种PLC系统方案进行硬件配置和软件功能比较,最后结果是三菱公司的CC-Link网络方案性价比好,其系统配置图(2)和系统配置说明如下。 从图(2)可看到,控制系统采用AnS、FX2n两种PLC,通讯网络分别采用CC-Link网络和RS485N:N通讯网络。因当时FX2N没有CC-Link主站模块,所以采用经济型A1SJHCUP作为CC-Link的主站。 上一页 1 2 下一页

摩登3注册网站_D-Link移动医疗解决方案

医疗行业作为与人民生活息息相关的行业,在经过多年的医疗体制的改革,市场竞争,部分医院在经济效益、社会效益得到提升后,已经越来越感觉到管理方面的不足,需要更先进的手段来提高管理及保证医疗技术的提升,实现医院核心竞争力的提升。这两方面的需求就使得信息化的建设显得尤为重要。 本文引用地址:http://www.eepw.com.cn/article/198860.htm 目前国内大部分医院都采用了医院信息系统(HIS),来实现提升管理的目的,而这就需要强大、灵活的网络支持,这一部分主要是以有线网络为主;而真正提升医疗技术水平和服务质量的,是临床信息系统(CIS),临床信息系统移动信息流量巨大,而且分类复杂,传统的因HIS而搭建的有线网络模式已经不足以支撑现有“以病人为中心”的医疗服务体系的技术化需求,这就需要多样化的网络来满足医院的需求。 目前,无线技术在医疗上的新应用对于提高医护人员的工作效率,提高救治生命质量,推动数字化医院建设必将发挥着越来越重要的作用。作为医院有线局域网的补充,无线局域网有效地克服了有线网络的弊端,利用PDA、笔记本电脑或移动诊疗设备随时随地进行生命体征数据,医护数据的查询与录入,医生查房,床边护理,呼叫通信,护理监控,药物配送和病人标识码识别,语音通讯应用等等,无线技术将会发挥难以替代的效用。 医院和医疗中心能够以更低的成本更有效的采集及管理信息,这不仅节省了时间,而且在特殊情况下还挽救了生命。 医院针对无线技术主要需求: 1、 信息点不足 2、 重症监护室无线监控 3、 医生移动查房诊疗 4、 护士移动护理 5、 WIFI>WIFI医疗设备 6、 WIFI语音通讯 解决方案 针对医疗行业所产生的新的业务需求,DLINK推出了两种完善的无线技术解决方案用来解决不同的需求; 智能型AP解决方案(以下称胖AP解决方案) 这种方案主要用来解决需要无线设备覆盖范围比较小,信息点不足,建筑群之间网络连接、重症监护室无线监控等问题。 无线设备覆盖范围比较小: 因为每个胖AP都是一个单独的管理系统,需要单个设置及管理,如果在医院需要进行全院或大规模进行无线信号覆盖,需要很多的AP,需要对这些AP进行单独的管理,一旦有网络故障,这对管理者来讲是个很大的挑战及麻烦。故建议只有在小规模使用时采用胖AP解决方案。 信息点不足: 无线网络是有线网络的补充,当在原有的有线网络出现信息点不能满足现有设备数量的情况时,如果重新布信息点成本比较高或因为其它因素无法布点。建议采用无线设备来解决,因为主要是为台式机提供网络资源,故可以采用胖AP解决方案。 建筑群之间网络连接: 在有些医院内,有一些和信息中心因为其它因素无法进行有线连接的建筑物,而信息又需要进行沟通,针对这种情况建议采用无线设备连接。 重症监护室无线监控: 在总后卫生部技术支持中心所承接的科技部数字化医院课题中,在重症监护系统中采用了DLINK的无线监控设备用于病人监护,所采集的图象整合到重症监护系统中。可以减轻护士的查房工作,及时发现病人突发情况。无线监控设备也可以安装在手术室,由外面的专家来时时掌握手术进度,并进行指导。这一类的需求也可以采用胖AP解决方案。 以上采用胖AP解决问题的需求有一个最重要的共同点,无线接收设备位置都是固定不变的,且需要无线覆盖的范围相对比较小。 医生移动查房诊疗: 医生作为治疗的主体,需要在不同的病房内去检查不同的病人,并根据情况下医嘱或查阅病人的病历,这些都需要笔记本电脑、PDA、移动信息台车等无线信息设备,这就要求所搭建的无线网络必须满足在不同的AP覆盖范围内实现无缝漫游的功能;针对此类需求,必须采用无线交换机+瘦AP的方案才能避免胖AP网络出现的跨AP断线、需要重新登陆认证的麻烦,达到无缝漫游的目的。 护士移动护理 很多医院都上了移动护理系统或移动信息台车,以提高护理的工作效率及护理质量,这一类系统或设备都需要能够实现无缝漫游的无线网络,只能采用无线交换机+瘦AP的解决方案。 医院的医疗设备非常密集,而且非常重要,不能够有任何干扰,以致使设备在工作是出现差错。但目前使用固定电话有一定的局限性,手机的功率又比较大(通话时的功率在200毫瓦左右),对部分敏感度高的医疗设备会产生影响。所以建议采用WIFI标准的手机,实现语音通讯(WIFI手机的功率通常在30毫瓦左右)。此需求也要求医院内部有可以实现无缝漫游的无线网络,必须采用无线交换机+瘦AP的解决方案。 移动医疗设备应用: 现在部分医院已经使用了具有WIFI功能的监护设备,医护人员通过这些设备提取病人的生理信息,并通过无线网络发送到诊断中心及服务器,极大的减轻了医护人员的工作量及提高了效果。 以上这几种需求有一个最重要的共同点,信息终端都需要大范围移动。综上所述,如用户有着多样的需求,必须采用无线交换机+瘦AP系统。医院用户在此基础上还会有很多其他的需求,但最基本的需求是,整个网络管理简单、能够实现无缝漫游。 更多医疗电子信息请关注:21ic医疗电子频道

摩登3登录网站_浅析基于CC2480的水分梯度测量系统设计方案

摘要:介绍了一种通过ZigBee无线数据传输方法来自动采集土壤温度和水分梯度数据的测量系统。详细介绍了以MSP430F149为主控制器,通过与ZigBee协处理器CC2480的交互通信,实现土壤温度和水分梯度测量节点的大规模智能化网络布局。最终数据采集节点通过GPRS公共信道或有线传输至数据接收终端。与传统的单点地表测量系统相比,本测量系统具有布置灵活、自动连续、低功耗、测量结果精度高等特点,为农田监测、水土保持、环境保护等领域提供了可靠、有效的监测手段。 本文引用地址:http://www.eepw.com.cn/article/193034.htm 关键词:ZigBee;水份梯度;MSP430F149;智能化;CC2480 引言 长久以来,土壤的温度、水分一直是农业研究领域的重点研究对象。作为土壤的两大基本属性,土壤温度、水分的细微变化都会对农作物的生长产生极大的影响。很多研究表明,在土地水土保持、农业节水灌溉、土壤的肥力调配、大范围的局地性气候变化和生态环境保护诸多研究领域中,土壤温度、水分的时空性变化也是极为重要的两个参考性因素。因此,在农业、环境科学、气象等多个研究领域中,都把土壤温度、水分作为研究观测的基本对象。 由于我国的地理环境情况复杂,各地区数据观测水平参差不齐,导致土壤温度、水分的数据来源比较匮乏,数据汇总难度较大。传统的测量方式获取的土壤温度和水分数据,在测量精度、数据采集量、可靠性方面远远不能满足现今高精度、网络化、智能化的测量需求。与此同时,传统的土壤温度、水分测量仪器也只能测得单一的土壤表层的温度、水分数据,缺乏能够在大范围区域和土壤的垂直梯度方向上完整、实时、自动连续测量土壤温度、水分的方法和仪器。 随着现代工业自动化技术的不断进步,ZigBee无线通信技术的发展日益成熟,其被广泛应用于无线传感器测量网络、自动气象站、智能交通、智能家居等众多领域。ZigBee无线通信技术的低功耗、短距离、低成本、布网灵活等特点十分适合用于需要自动连续采集数据、局域分布测量、大范围联网数据处理的测量场合。通过ZigBee无线网络可以方便地实现多个土壤温度、水分传感器的分散布局,从而可以方便地实现土壤测量参数的收集处理。 1 系统设计原理及结构 系统的前端数据采集包括土壤温度、水分传感器若干组,具体根据测量的区域范围大小来定。每组传感器在待测土壤垂直梯度方向上以每隔20 cm间距依次布局7~8个左右的传感器。在待测土壤区域垂直挖掘出一个深度d≥1.5 m的圆柱形深坑。同时将传感器通过类似于卡座 固定于直径小于深坑的不锈钢圆管之中,在埋置不锈钢圆管时先在管外埋土,最后往不锈钢圆管内注入土壤。传感器梯度埋设如图1所示。 土壤温度和水分传感器信号分别经过前端信号的放大和采样电路送至各个传感器节点上的模数转换通道进行A/D转换。为了实现多路的土壤梯度温度、水分测量,传感器节点通过单片机引脚信号来控制多路模拟开关,实时自动选择所需转换的通道。 每组传感器节点自动地建立一个网络,整个无线网络拓扑选用星型网络结构,该网络结构方便、可靠,可由中心采集节点完成对周围传感器节点的数据集结。在自建立网络完成后,传感器节点与采集节点建立绑定关系,周期性的向采集节点发送数据。传感器节点在固定时间内没有收到采集节点的应答消息时能自动重组网络,重新寻找新的采集节点。同时,可通过全功能路由节点来实现数据的接力传递,来扩大整个数据采集范围。最终采集节点将数据进行内部存储,对所得数据进行相关的校正处理,提升其测量精度,得出理想可靠的实时数据。按照行业规范的统一数据传输格式调制数据,最终通过GPRS模块或者RS232/RS485通信接口传送至数据显示终端进行观测分析。系统结构图如图2所示。 2 系统硬件结构 系统的硬件部分主要包括前端信号采集放大电路和数据通信电路两部分,系统硬件结构框图如图3所示。 系统硬件结构包括有主控制器MSP430F149,CC2480协处理器,电池电源,多路土壤温度、水分传感器电路以及采样放大电路。主控制器MSP430F149是一款来自TI公司的16位低功耗处理器,多达5种低功耗模式适用于设计干电池供电要求的设备,片上集成性能出色的外设模块,片内有60 KB的Flash和2 KB的RAM。ZigBee协处理器CC2480通过4线SPI接口和主控MCU的通信完成数据的传输采集。前端信号采集通过适合于埋设在土壤中测量土壤温度、水分的PT100铂热电阻和多路FDR土壤水分传感器来完成。此外,对于铂热电阻测得的微弱电流信号需通过低功耗仪表放大器AD8226实现信号的放大和抬升。而多路FDR土壤水分传感器则是直接输出电压信号,通过简单的电阻转换采样即可使用。 2.1 传感器电路 土壤温度、水分传感器选用了适合于土壤测量的三线制PT100铂热电阻,其外层封装适用于长期埋设于土壤层中。PT100铂热电阻值随温度的变化而变换,其在常温测量范围内具有良好的线性度,且精度高、稳定性好、耐冲击性强。其阻值和温度满足以下关系:当-200℃≤t ≤0℃时,Rt=R0×[1+At+Bt2+C×(t-100)×t3];在0℃≤t≤850℃时,Rt=R0×(1+At+Bt2)。A、B、C为温度系数;Rt为t℃下的电阻值;R0为0℃下的电阻值。 两线制的铂热电阻随着使用距离的延长会增加导线的长度,由线电阻带来的附加误差使得测量结果误差较大。三线制的铂热电阻将导线的一根接到电桥的电源端,其余两根分别接到相应的电桥桥臂上。采用全等臂电桥时,导线电阻的变化对测量结果的影响几乎可以忽略不计,而且测量距离较远,多用于工业现场使用。四线制铂热电阻,通过两端导线接入恒流源,直接通过另外两根导线测得铂热电阻值。测得的电阻值精度很高,完全不受导线电阻影响,但测量距离较短、成本较高,多用于实验使用。 霍尔传感器相关文章:霍尔传感器工作原理 电度表相关文章:电度表原理 霍尔传感器相关文章:霍尔传感器原理 上一页 1 2 下一页