标签目录:摩登3有主管吗

摩登3注册网址_EUV让摩尔定律重获新生,6nm 5G芯片手机明年量产

今年2月,紫光展锐发布了首款采用SoC单芯片设计的5G方案“虎贲T7520”,采用了6nm EUV工艺制造,拥有多层极紫外光刻技术加持,相比初代7nm晶体管密度提高18%,芯片功耗则可降低8%。 虎贲T7520基于马卡鲁2.0平台,这也是继华为、高通、三星、联发科之后首款采用6nm EUV的5G SoC。 据国内媒体报道,近日紫光展锐执行副总裁周晨接受采访时表示,T7520很快会达到CS(商业样品)的状态。他表示,紫光展锐在这个产品上投入很多资源。 “这个产品是我们整个5G,特别是面向消费类产品很重要的根。我们基于T7520后续规划的是系列化的5G SoC产品,也都在路上。” 据悉,搭载虎贲T7520的手机将于明年量产。 对于为何选择6nm,紫光展锐CEO楚庆表示,EUV重新让摩尔定律获得了生命。业界第一个使用EUV的工艺节点是7nm,我们选择6nm是因为EUV的应用更加成熟,供货也充足。” 在早先的科普文章中,紫光展锐曾提到,只有引入EUV技术的6nm才是真正的6nm。 自1965年英特尔创始人之一的戈登·摩尔提出摩尔定律以来,半导体领域就一直在遵循着“当价格不变时,集成电路上可容纳的元器件的数目,约每隔18个~24个月便会增加一倍,性能也将提升一倍”的规律前行。技术人员一直在研究开发新的IC制造技术,以缩小线宽、增大芯片的容量。 EUV光刻机的出现,就是一个重大突破。它实现了高速,低功耗和高集成的芯片生产工艺,满足了5G高性能、超带宽、低时延和海量连接的需求。 内容来源: 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

摩登3登录网站_【新品推荐】创龙科技AM335x邮票孔核心板,含税218元起

1 产品简介 创龙科技SOM-TL335x-S是一款基于TI Sitara系列AM3352/AM3354/AM3359 ARM Cortex-A8高性能低功耗处理器设计的低成本工业级核心板,通过邮票孔连接方式引出千兆网口、LCD、GPMC等接口。核心板经过专业的PCB Layout和高低温测试验证,稳定可靠,可满足各种工业应用环境。 用户使用核心板进行二次开发时,仅需专注上层运用,降低了开发难度和时间成本,可快速进行产品方案评估与技术预研。 (SOM-TL335x-S核心板视频简介) 2 应用领域 3 软硬件参数 硬件框图 硬件参数 软件参数 4 开发资料 (1) 提供核心板引脚定义、可编辑底板原理图*、可编辑底板PCB*、芯片Datasheet,缩短硬件设计周期; (2) 提供系统烧写镜像*、内核驱动源码*、文件系统源码*,以及丰富的Demo程序; (3) 提供完整的平台开发包、入门教程,节省软件整理时间,上手容易。 开发案例主要包括:  Linux应用开发案例 Linux-RT应用开发案例 Qt开发案例 EtherCAT开发案例 备注:*标资料为购买后提供。 可点击下方链接或扫码二维码获取产品资料 http://site.tronlong.com/pfdownload 5 电气特性 工作环境 功耗测试 备注:功耗基于TL335x-EVM-S评估板测得。功耗测试数据与具体应用场景有关,测试数据仅供参考。 状态1:系统启动,评估板不接入外接模块,不执行额外应用程序。 状态2:系统启动,评估板不接入外接模块,运行DDR压力读写测试程序,ARM Cortex-A8核心的资源使用率约为100%。 6 快速评估 配套评估板为TL335x-EVM-S。 TL335x-EVM-S评估板视频简介) 详细介绍请点击下方链接: http://www.tronlong.com/Product/show/180.html 7 产品购买 购买链接:https://tronlong.taobao.com 8 学习与交流 AM335x交流群:373129850、487528186 【活动预告】: 创龙年终狂欢季,   更多方案,欢迎与Tronlong联系: 销售邮箱:sales@tronlong.com 技术邮箱:support@tronlong.com 创龙总机:020-8998-6280 技术热线:020-3893-9734 创龙官网:www.tronlong.com 技术论坛:www.51ele.net 官方商城: 创龙官网 创龙微信公众号 【长按识别二维码关注我们】 期待您的 分享 点赞 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

摩登3测速登陆_刨根问底,Kafka消息中间件到底会不会丢消息

大型互联网公司一般都会要求消息传递最大限度的不丢失,比如用户服务给代金券服务发送一个消息,如果消息丢失会造成用户未收到应得的代金券,最终用户会投诉。 为避免上面类似情况的发生,除了做好补偿措施,更应该在系设计的时候充分考虑各种异常,设计一个稳定、高可用的消息系统。 认识Kafka 看一下维基百科的定义 Kafka是分布式发布-订阅消息系统。它最初由LinkedIn公司开发,之后成为Apache项目的一部分。 Kafka是一个分布式的,可划分的,冗余备份的持久性的日志服务。它主要用于处理活跃的流式数据。 kafka架构 Kafka的整体架构非常简单,是显式分布式架构,主要由producer、broker(kafka)和consumer组成。 Kafka架构(精简版) Producer(生产者)可以将数据发布到所选择的topic(主题)中。生产者负责将记录分配到topic的哪一个 partition(分区)中。可以使用循环的方式来简单地实现负载均衡,也可以根据某些语义分区函数(如记录中的key)来完成。 Consumer(消费者)使用一个consumer group(消费组)名称来进行标识,发布到topic中的每条记录被分配给订阅消费组中的一个消费者实例。消费者实例可以分布在多个进程中或者多个机器上。 Kafka到底会不会丢失消息? 在讨论kafka是否丢消息前先来了解一下什么是消息传递语义。 消息传递语义 message delivery semantic 也就是消息传递语义,简单说就是消息传递过程中消息传递的保证性。主要分为三种: at most once:最多一次。消息可能丢失也可能被处理,但最多只会被处理一次。 at least once:至少一次。消息不会丢失,但可能被处理多次。可能重复,不会丢失。 exactly once:精确传递一次。消息被处理且只会被处理一次。不丢失不重复就一次。 理想情况下肯定是希望系统的消息传递是严格exactly once,也就是保证不丢失、只会被处理一次,但是很难做到。 回到主角Kafka,Kafka有三次消息传递的过程: 生产者发消息给Kafka Broker。 Kafka Broker 消息同步和持久化 Kafka Broker 将消息传递给消费者。 在这三步中每一步都有可能会丢失消息,下面详细分析为什么会丢消息,如何最大限度避免丢失消息。 生产者丢失消息 先介绍一下生产者发送消息的一般流程(部分流程与具体配置项强相关,这里先忽略): 生产者是与leader直接交互,所以先从集群获取topic对应分区的leader元数据; 获取到leader分区元数据后直接将消息发给过去; Kafka Broker对应的leader分区收到消息后写入文件持久化; Follower拉取Leader消息与Leader的数据保持一致; Follower消息拉取完毕需要给Leader回复ACK确认消息; Kafka Leader和Follower分区同步完,Leader分区会给生产者回复ACK确认消息。 生产者发送数据流程 生产者采用push模式将数据发布到broker,每条消息追加到分区中,顺序写入磁盘。消息写入Leader后,Follower是主动与Leader进行同步。 Kafka消息发送有两种方式:同步(sync)和异步(async),默认是同步方式,可通过producer.type属性进行配置。 Kafka通过配置request.required.acks属性来确认消息的生产: 0表示不进行消息接收是否成功的确认;不能保证消息是否发送成功,生成环境基本不会用。 1表示当Leader接收成功时确认;只要Leader存活就可以保证不丢失,保证了吞吐量。 -1或者all表示Leader和Follower都接收成功时确认;可以最大限度保证消息不丢失,但是吞吐量低。 kafka producer 的参数acks 的默认值为1,所以默认的producer级别是at least once,并不能exactly once。 敲黑板了,这里可能会丢消息的! 如果acks配置为0,发生网络抖动消息丢了,生产者不校验ACK自然就不知道丢了。 如果acks配置为1保证leader不丢,但是如果leader挂了,恰好选了一个没有ACK的follower,那也丢了。 all:保证leader和follower不丢,但是如果网络拥塞,没有收到ACK,会有重复发的问题。 Kafka Broker丢失消息 Kafka Broker 接收到数据后会将数据进行持久化存储,你以为是下面这样的: 消息持久化,无cache 没想到是这样的: 消息持久化,有cache 操作系统本身有一层缓存,叫做 Page Cache,当往磁盘文件写入的时候,系统会先将数据流写入缓存中,至于什么时候将缓存的数据写入文件中是由操作系统自行决定。 Kafka提供了一个参数 producer.type 来控制是不是主动flush,如果Kafka写入到mmap之后就立即 flush 然后再返回 Producer 叫同步 (sync);写入mmap之后立即返回 Producer 不调用 flush 叫异步 (async)。 敲黑板了,这里可能会丢消息的! Kafka通过多分区多副本机制中已经能最大限度保证数据不会丢失,如果数据已经写入系统 cache 中但是还没来得及刷入磁盘,此时突然机器宕机或者掉电那就丢了,当然这种情况很极端。 消费者丢失消息 消费者通过pull模式主动的去 kafka 集群拉取消息,与producer相同的是,消费者在拉取消息的时候也是找leader分区去拉取。 多个消费者可以组成一个消费者组(consumer group),每个消费者组都有一个组id。同一个消费组者的消费者可以消费同一topic下不同分区的数据,但是不会出现多个消费者消费同一分区的数据。 消费者群组消费消息 消费者消费的进度通过offset保存在kafka集群的__consumer_offsets这个topic中。 消费消息的时候主要分为两个阶段: 1、标识消息已被消费,commit offset坐标; 2、处理消息。 场景一:先commit再处理消息。如果在处理消息的时候异常了,但是offset 已经提交了,这条消息对于该消费者来说就是丢失了,再也不会消费到了。 场景二:先处理消息再commit。如果在commit之前发生异常,下次还会消费到该消息,重复消费的问题可以通过业务保证消息幂等性来解决。 总结 那么问题来了,kafka到底会不会丢消息?答案是:会! Kafka可能会在三个阶段丢失消息: (1)生产者发送数据; (2)Kafka Broker 存储数据; (3)消费者消费数据; 在生产环境中严格做到exactly…

摩登3官网注册_5G网络下,怎么打电话?

打电话,是每个人最原始的需求,也是移动通信最初的目标。 目前,以微信为代表的各种OTT(Over The Top)语音非常流行。但是,仍然无法取代传统语音电话业务。 传统语音电话业务,作为最基础的通信服务,拥有最高的优先级。在关键时刻,它是我们的救命稻草。 在网络信号不好的时候,上网龟速,微信语音卡成狗,视频根本无法接通。但是,电话肯定是可以打通的,虽然音质可能不好,但可以满足基本需求。这就是基础服务保障的承诺。 当遇到紧急情况时,不管你的手机有没有信号,甚至连SIM卡都没插,照样能打通紧急呼叫电话。这就是传统语音电话业务的优势。 5G,作为最先进的移动通信网络,是如何实现语音业务的呢? ▉ 5G网络怎样支持语音业务? 最根本的方式是:自己动手,丰衣足食。也就是说,5G直接支持VoNR(Voice over New Radio),不看4G甚至3G和2G的脸色。 5G的网络架构其实承袭自4G,只支持分组交换,不支持电路交换,也就是说自身的5GC核心网是没法支撑语音业务的,必须依赖于一个叫做IMS的系统。 IMS又叫IP多媒体子系统,可以在分组交换网络下实现语音业务。5G的无线接入部分叫做NR(New Radio),跟IMS结合之后,独立打电话的问题完美解决。因此基于5G的语音业务就叫做VoNR (Voice over NR)。 这一点跟4G如出一辙,4G在IMS支持下的语音业务就叫VoLTE(Voice over LTE)。VoLTE目前已经在国内广泛支持。 如果5G不支持VoNR,那就只能靠4G的VoLTE,甚至3G和2G支持的电路交换域语音业务,进行兜底。 根据网络部署模式,5G可分为NSA(非独立组网)和SA(独立组网)两类。再根据5G是否支持VoNR,以及4G是否支持VoLTE,分为以下多种方案。 NSA下的语音业务: 在NSA下,5G网络被称作辅节点,作为4G的流量补充,并不直接参与语音业务,所有语音功能完全由4G完成,因此5G就都不支持VoNR。 如果4G支持VoLTE功能,则直接进行语音,覆盖不好的时候通过SRVCC(Single Radio Voice Call Continuity,单无线语音呼叫连续性)切换到3G或者2G。 如果4G不支持VoLTE,在拨打电话的时候就会直接回落到3G或者2G(这个功能称作CS Fallback,电路交换回落)。 SA下的语音业务: 在SA模式下,5G语音方案比较复杂,有四种场景。总体思路是,5G网络优先使用VoNR,如不支持,则回落到到4G的VoLTE,最后由3G或者2G进行兜底。 场景1:5G网络支持语音功能(VoNR),则可直接在5G上接通电话,然后在5G信号不好的时候切换到4G的VoLTE。如果用户跑到了4G覆盖不好的地方,还可以通过SRVCC切换到3G或者2G。 场景2:5G网络支持VoNR,则可直接在5G上接通电话,在5G信号不好的时候发现4G信号也不好,直接由5G通过SRVCC把电话切换到3G。 5G到3G的SRVCC刚刚在3GPP R16版本中标准化,目前还没有手机支持。 既然从5G能切换到3G,未来也会支持切到2G吧?实际上没有那个必要,因为一般情况下3G已经覆盖够好,足够用来兜底了,再说2G也没几年就要退网了,不值得再花钱投资。 场景3:5G网络不支持VoNR,则在打电话的时候先通过EPSFB(EPS Fallback)来回落到4G的VoLTE,在4G覆盖不好的时候再通过SRVCC切换到3G或者2G。 场景4:5G网络不支持VoNR,则在打电话的时候先通过EPSFB来回落到4G,结果很不幸,4G也不支持VoLTE,只能再次通过CSFB回落到3G或者2G来打电话了。 可以看出,在这几个场景中,手机打着打着电话,很可能从5G跑到了4G,甚至还很可能从4G再跑到3G或者2G。就打完电话之后,还要继续留在4G,甚至3G或者2G吗? 由俭入奢易,由奢入俭难。习惯了5G/4G的高速率,对于3G和2G的龟速是不可接受的,因此需要尽快让手机返回能力最强的网络,这个过程就叫做快速返回。 同样是基于IMS的语音业务,VoNR和VoLTE相比到底有什么优势呢? 首先,当手机驻扎在5G小区时,使用VoNR简单直接,否则还要经过EPS Fallback回落到4G,信令流程增加了,时延也必然增加,影响用户体验。 然后,VoNR下强制支持一种新的语音编解码方案,可以有效提升语音通话的音质到HiFi的级别,这就是EVS(Enhanced Voice Services),也叫超高分辨率语音(Super HD Voice)。 其实EVS早在3GPP R12版本就已经定义了,彼时还是LTE的发展正如日中天,但由于大家对语音质量都不够重视,一直少有手机支持。这一拖,就到了5G时代。 EVS是怎么提升音质的呢? 声音是由振动产生的,在空气中传播就形成了声波。但人的耳朵只能听到有限一段频率内的声波,范围是20Hz到20000Hz。 人的声带能发出的频率范围要更窄一些,为85Hz到1100Hz。 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

摩登3测试路线_靠近核心的LMF,让你的定位服务更好用

5G系列文章回顾 1. 5G,看得见的未来 (总述) 2. 5G无线关键技术总览 3. 5G核心网关键技术总览  4. 5G承载关键技术总览 无线专题 1. 大规模MIMO自述  2. 5G RAN:您的配送服务已升级  3. 5G时代,多址技术何去何从? 4. D2D,让通信的方式简单点 5. MUSA,5G物联网为什么需要你? 6. 是兄弟一起上,5G UDN不负众望 7.上行要想快,还需FAST带 8.5G RAN节能 9.5G时代,你还在手工调天线吗? 10.SSB 1+X:不管你站得多高,都让你的手机信号满满! 核心网专题 1. 5G切片,切的究竟是什么? 2. SBA,你对5G核心网做了什么? 3. 5G核心网,这次你是真的变了吗? 4. 移动边缘计算,站在5G“中央”? 5. 朋友一生一起走,计算存储要分手  6. 聆听5G的声音!  7. MANO,你凭什么编排我的人生? 8. 云“养”核心网,NFV你准备好了吗? 9. 您的新朋友OpenStack正飞奔而来,请做好准备 10. 当信令网遇上5G 11.5G时代,短信演进之路 12.先理解智能,再谈硬件加速 13.融合计费,为何成为5G新宠? 14.服务化的5GC,由谁来控制? 15.5G分流,为了更好的遇见 1. ROADM为承载网带来了什么? 2. 5G时代,是谁撼动了MPLS的江湖地位? 3. 5G是如何传输数据的? 4. 什么是SDON软件定义光网络? 5. 5G时代,是谁为数据中心带来了新的活力? 6. 5G承载网,你的路修好了吗? 7. 是谁让5G光传送网(OTN)变得更灵活及强大? 8. 5G时代,以太网家庭幸福的秘诀是什么?  9. 你以为的北京时间,是真的北京时间吗? 10.堆叠,你能为5G做些什么? 11.No PULL, Just PUSH! 12. 数据中心也要迎战5G了? 13. 原来你是这样的5G电信云! 14.5G电信云数据中心的逻辑组网 15.“云诊断、云课堂、云旅游…”背后的力量 16.5G承载网,你的稳定我来守护 17.5G时代,PON出“新花样” 5G知识抢先看 欢迎继续关注后续精彩 同时 真诚欢迎您留言对5G技术的需求 我们将竭诚为您服务 我们是一群平均从业年限5+的通信专业工程师。关注我们,带你了解通信世界的精彩!分享 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

摩登3娱乐登录地址_罗德与施瓦茨推出用于微波器件测试的全新系统放大器

罗德与施瓦茨采用创新的方法,推出全新的系统放大器,可满足无线通信、物联网、卫星和雷达市场的应用需求和挑战。R&S®SAM100具有前所未有的高功率输出,超宽带宽和业内领先的超低噪声,可为客户提供优异的微波功率解决方案。 作为全球领先的微波测试与测量系统厂商,罗德与施瓦茨发布了采用创新技术的系统放大器R&S®SAM100,该微波放大器工作频率可覆盖2-20GHz,提供了高达20W的输出功率,它体积紧凑,设计稳固,并且操作便捷,树立了微波放大器的新标准。 R&S®SAM100面向移动无线电(UMTS、LTE、4G和5G)、物联网(WLAN、蓝牙)、卫星和雷达应用的微波无源和有源组件以及微波设备的制造商。罗德与施瓦茨专注于使用系统放大器进行设计验证测试(DVT)的研发工程师的专业要求,测试工程师使用系统放大器为产品验证测试(PVT),以及用于射频产品的生产验证。R&S®SAM100还可以应用于EMC测试,满足需要测试高达18 GHz的EMC测试实验室工程师的需求。 “R&S®SAM100采用了创新的方法,来应对系统放大器的挑战”,罗德与施瓦茨公司放大器系统产品总监Wolfram Titze说道, “它结合了高输出功率,超宽带宽和低噪声,这是基于罗德与施瓦茨独有的技术实现的。R&S®SAM100采用非常紧凑的台式设计架构,利用外部电源供电,方便用户在各种场景中获得高的射频功率输出。” 基于罗德与施瓦茨公司几十年的功放设计经验,以及严苛的研究和开发,R&S®SAM100代表了新一代的超宽带微波放大器,在 2 – 20 GHz的频率范围内,灵活提供各种测试设置和系统配置。它所具有的高增益、低噪声和卓越线性度特性,非常适合AM、FM、 PM和 OFDM等信号的放大应用。 Wolfram Titze还补充道:“我们给重要客户提供了大量的β版测试设备,并且R&S®SAM100获得了众多好评。随着对移动无线电和物联网设备的需求不断增加,这款新型放大器为新产品更快推向市场带来了巨大的优势。”

摩登3平台首页_国内大陆有哪些芯片公司处于世界前10?一起看看!

1.华为海思:2020Q1跻身全球第十大半导体厂商 今年5月6日,调研机构IC Insights发布了其2020年第一季度全球十大半导体(IC和OSD,OSD是光电器件、传感器和分立器件的缩写)销售排名,华为海思创造历史,一季度的销售额同比大幅上涨,首次冲入半导体领域前十名。 2020年第一季度,海思销售额接近27亿美元,同比增长54%,在前十名中增幅最大。海思用了16年达到这一的成就,2004年海思作为华为的“备胎”成立,此后便一直在背后孜孜不倦的研发。 2.华大半导体:全球第十大MCU供应商、全球第五大安全芯片供应商 IC设计出身的华大半导体,是中国电子信息产业集团有限公司(CEC)整合旗下集成电路企业而组建的集团公司。2014年成立至今,始终名列中国集成电路设计企业前五名。其最初的业务领域是安全芯片与MCU,而在这两大领域,华大半导体已成为全球第十大MCU供应商、全球第五大安全芯片供应商。 华大半导体从一开始就立足MCU市场,主要聚焦在工业控制、汽车电子、安全芯片领域。根据Omdia的数据统计,华大半导体是全球第十的MCU供应商。据了解,华大MCU事业部现有员工超过100人,其中85%以上为研发人员。华大半导体的MCU主要包含4大系列,分别为超低功耗MCU、通用类MCU、电机类MCU以及车规的MCU。 图源:英飞凌2020 Q4财报(数据来源Omdia) 再者,在安全芯片领域,华大电子作为网络安全和信息化领域安全芯片的国家队,已从事安全芯片产品研发、生产和销售20多年,产品广泛应用于智能卡、智能表计、智能家居、智能安防、智能交通和智能网联汽车等多个领域。根据ABI Research的研究,华大的安全芯片以9.2%的全球市占率排在第五位。目前,华大电子安全芯片产品累计出货量已超过160亿颗,是国内最大的智能卡安全芯片商。 图源:英飞凌2020 Q4财报(数据来源ABI Research) 3.兆易创新:NOR Flash全球第四 兆易创新的NOR Flash位居全球第四在去年就早有耳闻,据CINNO Research对2019第二季度存储产业研究报告显示,公司在NOR Flash领域超越美光,以13.9%的市场份额首度站上全球第四名的位置;据Web-Feet Research对2019第三季度存储产业研究报告显示,公司Nor Flash市场份额提升到18.3%,超越赛普拉斯排名全球第三,前二名分别为华邦电子和旺宏电子。而在英飞凌的财报中,结合Omdia的数据研究,兆易创新以12.8%的市场份额排在第四位。 兆易创新提供了从512Kb至2Gb的系列产品,涵盖了NOR Flash市场的绝大部分容量类型,电压涵盖1.8V、2.5V、3.3V以及宽电压产品,针对不同应用市场需求分别提供高性能、低功耗、高可靠性、高安全性等多个系列,产品采用领先的工艺技术节点和优化的设计,性能、成本、可靠性等在各个应用领域都具有显著优势。 4.安世半导体:电源分立元件和模块全球第十 2019年6月份,闻泰集团斥资268亿收购荷兰安世半导体(Nexperia)的交易被证监会批准,中国史上最大规模的半导体收购案正式完成。自此,安世半导体正式成为中国的一家半导体企业。在Omdia的数据统计中,安世半导体的电源分立元件和模块排在全球第十位。 在细分领域,安世半导体可谓是实力雄厚。安世半导体的小信号二极管、晶体管和ESD保护器件均排名第1,PowerMOS在汽车领域排名第2,逻辑器件也排名第2,小信号MOSFET排名第3。 5.吉林华微:IPM全球第十 根据Omdia的数据指出,2019年吉林华微的IPM排在全球的第十位。那么什么是IPM?IPM全称为智能功率模块(Intelligent Power Module)。我们都知道,变频控制器是变频空调、冰箱、洗衣机、电磁炉等的核心控制部件,它承担了电机驱动、PFC功率校正以及相关执行器件的变频控制功能。而变频控制器很重要的一环就是IPM模块,IPM将功率器件芯片(IGBT+FRD或高压MOSFET、控制 IC和无源元件等这些元器件高密度贴装封装在一起(见图1),通过IPM,MCU就能直接高效地控制驱动电机,配合白家电对低能耗、小尺寸、轻重量及高可靠性的要求。 华微电子智能功率模块是2013年建立,主要由华微控股子公司吉林华微斯帕克来主导。华微斯帕克以建立国内最大的智能功率模块研发、制造及销售公司为目标,吸引了一批从三洋、IR等出来的拥有十几年工作经验的专业团队加盟。 吉林华微斯帕克专注于智能功率模块的研发、生产和销售。公司成立于2013年初,工厂建筑面积3,500平方米,现有员工60人。首期投资月产能30万只的模块生产线,配备从美国、瑞士及日本等国家和地区进口的业界一流生产、检测设备,并拥有完整的可靠性实验室,可对产品进行高低温冲击、HAST、高温反偏、盐雾、高低温存储等全方位的可靠性测试及分析。公司的IPM代表性产品包括IPM DIP23-FP、IPM DIP25-FP、IPM DIP29-DBC等等。 6.士兰微:分立IGBT全球第十、IPM全球第九 经过将近二十年的发展,士兰微已从一家纯芯片设计公司发展成为目前国内为数不多的以IDM模式为主要发展模式的综合型半导体产品公司。公司主要产品包括集成电路、半导体分立器件、LED(发光二极管)产品等三大类。Omdia数据显示,士兰微的分立IGBT排在全球第十位,IPM排在全球第九位。 图源:英飞凌2020 Q4财报(数据来源Omdia) 士兰微电子可以说是布局IPM相对较早的一家厂商,2010年,在HVIC、IGBT 和MOS等芯片到位后士兰就启动了IPM设计,此后几年先后推出了多个IPM产品,包括IPM23、DIP24/25/26/27、SOP37单芯片等系列产品,其芯片开发制造、封装开发制造均自主完成。 2020年上半年,士兰微的IPM功率模块产品在国内白色家电(主要是空、冰、洗)、工业变频器等市场继续发力,上半年IPM营业收入突破1.6亿人民币,较去年同期增长90%以上。2020年上半年,国内多家主流的白电整机厂商在变频空调等白电整机上使用了超过600万颗士兰IPM模块,预期今后几年将会继续快速成长。 再者,上半年,士兰微的分立器件产品的营业收入为9.21亿元,较去年同期增长35.64%。分立器件产品中,MOSFET、IGBT、IGBT大功率模块(PIM)、肖特基管、开关管、稳压管、快恢复管等产品的增长较快。除了加快在白电、工业控制等市场拓展外,公司已开始规划进入新能源汽车、光伏等市场,预期公司的分立器件产品未来几年将继续快速成长。 7.歌尔股份:全球MEMS供应商企业营收排名第九 2019年歌尔首次跻身全球MEMS厂商前十名,排名第九。自2016年上榜全球MEMS厂商20强以来,歌尔仅用了四年的时间跻身前十,这是首个进入全球MEMS厂商前十的中国企业,也是上榜全球MEMS厂商20强的唯一一家中国企业。 2019年MEMS厂家的销售额排名TOP30,(单位:百万美元)(图片出自:Yole Développement) 据歌尔股份介绍,目前歌尔微电子主要从事公司MEMS麦克风、MEMS传感器、微系统模组等相关产品的设计、制造和销售,产品主要应用于智能手机、智能无线耳机、可穿戴产品、汽车电子等领域。 8.中国赛微电子(原耐威科技)控股公司Silex Microsystems:MEMS代工厂老大 根据Yole发布的2019 MEMS foundry排名情况来看,排在第一位的是中国的赛微电子(原耐威科技)控股公司Silex Microsystems,2018年Silex Microsystems排在第四位。自2000年成立以来,Silex一直是一家专门生产定制MEMS产品的制造商,并作为一家独立的MEMS代工厂运营。Silex拥有世界上第一个专用的8英寸纯MEMS代工厂。 2019年的MEMS Foundry销售额排行榜。一般情况下,MEMS Foundry也兼具半导体Foundry的功能,此处仅仅是MEMS Foundry的销售额统计。(图片出自:Yole Développement) 2015年7月13日,香港投资控股公司GAE Ltd.收购了Silex 98%的股份。因此,GAE已获得对Silex的实际控制权,而GAE的背后则是赛微电子(原来中国的耐威科技),获得对Silex的控股后,赛微电子在北京建设了MEMS晶圆代工厂,以扩大该公司的产能。Silex在瑞典拥有6英寸和8英寸晶圆厂,并在瑞典投资1200万美元进行了升级。Silex的优势在于使用其自有的硅通孔(TSV)技术,Silex还使用锆钛酸铅作为压电材料,用于能量收集等新型应用。 9.澜起科技:内存接口芯片全球巨头 公司自创立以来,公司专注于持续的技术研发和创新。作为优秀的芯片设计公司,公司一直保持较高的研发投入水平,研发投入规模常年保持在营业收入的15%以上。公司凭借着具有自主知识产权的高速、低功耗技术,逐步占据全球市场的主要份额,行业龙头地位稳固。 内存接口芯片作为公司的主营业务在未来几年有望高速增长,主要受益于两个方面:芯片销售量方面和产品价格方面。公司未来将享受芯片销售量与销售价格双重增长带来的营收福利。 10.豪威科技:CIS全球前三,汽车市场全球第二,安防市场全球第三 豪威科技(Omni Vision)1995年在美国硅谷成立,专注于高端CIS的研发、量产,CIS(CMOS image sensor)就是CMOS图像传感器,将光学图像转变为电子信号的感光元件,每个摄像头都有一个CIS。豪威在高端CIS领域不断实现技术突破。未来在国产替代和占领高端CIS市场将起到重要作用,是韦尔最优质最具前景的资产。2019年豪威营收接近100亿,手机业务占比58%、安防业务占比17%、汽车业务占比14%。CIS营收占韦尔总营收70%以上,本文将重点介绍CIS业务。 11.矽成半导体:车规级SRAM/DRAM全球前三 矽成是全球名列前茅的汽车存储芯片供应商,SRAM 位居全球第二,DRAM居全球前列,是为数不多的具有全球竞争力的汽车存储芯片公司,汽车业务占矽成收入五成以上。 2019年11月14日,证监会上市公司并购重组委对北京君正发行股份及支付现金购买资产并募集配套资金暨关联交易事项进行审核,获有条件通过。本次收购完成后,上市公司将直接持有北京矽成59.99%股权,并通过上海承裕间接持有北京矽成40.01%股权, 即直接及间接合计持有北京矽成100%股权。 本次交易有助于北京君正增加存储晶片等产品类别,将自身在处理器晶片领域的优势与北京矽成在存储器晶片领域的强大竞争力相结合,形成处理器+存储器的技术和产品格局,积极布局及拓展公司产品在车载电子、工业控制和物联网领域的应用。 12.聚辰股份:EEPROM内存全球第三,手机EEPROM全球第一 根据赛迪顾问统计,2018年聚辰半导体公司为全球排名第三的EEPROM产品供应商,占有全球约8.17%的市场份额,市场份额在国内EEPROM企业中排名第一;在智能手机摄像头EEPROM芯片细分领域,公司占有全球约42.72%的市场份额,在该细分领域奠定了领先的地位。公司已与舜宇、欧菲、丘钛、信利、立景、富士康等行业领先的智能手机摄像头模组厂商形成了长期稳定的合作关系,产品应用于三星、华为、vivo、OPPO、小米、联想、中兴等多家市场主流手机厂商的消费终端产品,并正在积极开拓国内外其他智能手机厂商的潜在合作机会。在液晶面板、通讯、计算机及周边、医疗仪器、白色家电、汽车电子等市场应用领域,公司也已积累了包括友达、群创、京东方、华星光电、LG、海信、强生、海尔、伟易达等在内的国内外众多优质终端客户资源,SPD/SPD TS EEPROM应用于DDR4内存模组产品,产品已通过英特尔授权的第三方AVL Labs实验室认证。公司同时也是国内主流智能卡芯片供应商,拥有国家商用密码产品生产/销售证书,是住建部城市一卡通专有芯片供应商之一。 13.三安光电:全球LED芯片龙头 三安光电重点布局LED行业,主要从事Ⅲ-Ⅴ族化合物半导体材料的研发与应用,着重于砷化镓、氮化镓、碳化硅、磷化铟、氮化铝、蓝宝石等半导体新材料所涉及到外延、芯片为核心主业。 三安光电制造实力稳居行业龙头,根据公司官网数据显示,公司具有规模化的LED芯片产能,约占全球芯片产能的19.72%。研发优势是公司保持先进制造实力的根本,截至2018年12月31日,三安光电拥有专利及专有技术1700余件,持续保持同样的芯片面积比竞争对手亮度高5%。 公司主营业为为LED芯片业务,2013-2018年,公司LED、芯片产品收入均占比公司全部营业收入的80%以上,2015年公司LED、芯片业务占比达到了93%。近年来,公司加快LED产业链的垂直一体化布局,产品由原来单一的外延片及芯片逐步向上游原材料(衬底、气体)和下游高端LED应用产品拓展,完善全产业链生产,公司LED芯片产品占比逐渐下降,材料收入占比逐渐上升,打造LED芯片全产业链布局。2018年,公司芯片及LED产品收入67.33亿元,较上年同比下降4.43%;材料、废料销售收入14.19亿元,较上年同比上升42.67%。 14.汇顶科技:全球生物识别芯片领先企业 汇顶科技是一家基于芯片设计和软件开发的整体应用解决方案提供商,总部位于深圳,上海分公司于2019年8月正式签约并将于12月入驻上海浦东软件园,目前主要面向智能终端、物联网及汽车电子领域提供领先的半导体软硬件解决方案。 产品和解决方案已经广泛应用于华为、小米、一加、OPPO、vivo、Google、Amazon、Samsung、Nokia、Dell、HP、LG、ASUS等国际、国内知名品牌,服务全球数亿人群,是安卓阵营应用最广的生物识别解决方案提供商。 承载在人机交互和生物识别领域的深厚积淀与技术成果,汇顶科技将立足全球半导体产业革新,坚定加大研发投入,全力打造智能终端、汽车电子和物联网三大业务布局,持续引领IC设计行业创新,努力成长为全球领先的综合型IC设计公司和世界一流的创新科技公司。 15.高德红外:红外芯片龙头 根据2019年三季报显示,高德红外前三季度的营业收入达到10.6亿元,相当于2018年全年的业绩,同比增长达到107.76%;归属于上市公司股东的净利润2.35亿元,同比增长142.29%。公司完美的实现了“总营收和净利润双双增长”的靓丽业绩。 高德红外作为目前国内唯一拥有三条生产线且已全部达到批量生产条件的厂商,可以高效保障高科技军工领域及民用领域对红外探测器芯片的需求。仅仅进入批量生产后仅一年时间就实现销售收入超过3亿元,净利润达1.5亿元。 另外,高德红外业绩的增长主要是由于从2018年底开始,公司陆续收到了大量的军品订单,截止2020年1月合同金额已经高达11亿元。再加上最近几年,公司作为国内红外行业的龙头企业,同时也是我国唯一拥有武器系统总体资质的民营军工集团,具有不可复制的竞争优势、技术优势和极深的护城河,在几乎“垄断性”优势的加持下陆续中标多个军品项目。另外,2020年作为“十三五计划”的最后一年,军品会迎来补偿性采购,从2018年开始公司的多个产品实现大批量交付,在未来公司的部分产品陆续定型并实现首批订货之后,所以可以预计未来公司的业绩将继续获得高增长。 欢迎补充…… 国内大陆哪些晶圆代工厂处于世界前10? 2020年第三季度全球前十大晶圆代工厂营收预测排名 根据上表可看出: 1.中芯国际(SMIC):晶圆代工全球第五 中芯国际发布了2020年第二季度财报,截至2020年6月30日,营收达9.38亿美元(约65.28亿人民币),环比增长4%,同比增长19%;毛利2.49亿美元,环比增加6.4%,同比增加64.5%。 产能方面,二季度财报显示,中芯国际月产能由今年一季度的47.6万片,增加至今年二季度的48.0万片。公司称,主要由于 2020 年第二季控股的上海 300mm 晶圆厂产能增加及生产计划调整的净影响所致。 产能利用率方面,由今年一季度的98.5%上升至二季度的98.6%,可以看出公司订单供不应求,整个产能处于满负荷运营状态。 资本开支方面,2020年计划的资本开支由约43亿美元增加至约67亿美元。具体来看,二季度开支达到13.4亿美元,一季度的开支则为7.8亿美元,据此计算,下半年的资本开支逾40亿美元,增加的资本开支将主要用于机器及设备的产能扩充,这意味着中芯国际下半年的产能或得到有效释放。 2.华虹半导体(Hua Hong):晶圆代工全球第九 2019年9月17日,华虹无锡集成电路研发和制造基地(一期)(华虹七厂)生产线投片,首批12英寸硅片进入工艺机台,开始55纳米芯片产品制造。这标志着项目将由工程建设期正式迈入生产运营期。作为长三角一体化联动沪苏两地的重大产业项目,总投资100亿美元的华虹无锡集成电路研发和制造基地是华虹集团走出上海、布局全国的第一个制造业项目,在华虹新二十年发展战略中具有极为重要的标志性意义。华虹无锡项目的建成投产,将成为全国最先进的特色工艺生产线、全国第一条12英寸功率器件代工生产线、江苏省第一条自主可控12英寸生产线。 华虹六厂自2018年10月18日投产以来,产能爬坡顺利,目前已经完成月产2万片的装机产能;华虹五厂实现连续两年盈利,年度出货量、单日作业量屡创新高;华虹宏力8英寸特色工艺制造平台(华虹一、二、三厂)在产能规模、营运效率方面持续保持领先,并连续9年实现盈利。 不出意外的话,华虹将在2022年前后实现14nm客户导入。在先进工艺上,华虹将和中芯国际一起扮演大陆集成电路制造的“双骄”。在武汉弘芯主攻14nm工艺后,加上中芯和华虹,中国大陆已经有3家企业研发工艺。 欢迎补充…… 国内大陆有哪些封测厂处于世界前10? 2020年第二季全球前十大封测业者营收预测排名 根据上表可看出: 1.江苏长电:封测全球第四 长电科技主要是做集成电路、分立器件的封装与测试以及分立器件的芯片设计、制造。…

摩登3主管554258:_中国35位“大国工匠”榜单出炉!西工大、西电合计占半壁江山!清华仅1人!

近日网上流传的一份《大学校友之“大国工匠”》引来无数网友围观,热议。有35位「大国之匠」上榜,均为国家顶级项目总设计师级别科学家,比如,辽宁舰总设计师朱英富、C919总设计师吴光辉、歼20总设计师杨伟。 令人意外的是,清华大学被誉为“中国最好工科院校”,却只有1位校友上榜“大国之匠”。 从35位「大国之匠」名单来看,陕西省高校表现最为突出,上榜了18位科学家,占据了这份榜单的半壁江山!其中,西北工业大学最强,上榜12位科学家;西安电子科技大学,上榜5位科学家;西安交通大学,上榜1位科学家! 不过也有网友表示这份名单上以军工航天居多,西工大在这个方面上是全国顶尖级别的,自然如此啦。 在“华东五校”中,最亮眼的当属中国科学技术大学,有5位校友上榜“大国之匠”! 此外工科名校哈尔滨工业大学、上海交通大学、同济大学、东南大学,均有校友上榜。 南京航空航天大学,虽然只是“211工程”大学,却有2位校友上榜“大国之匠”。 最令人意想不到的是南华大学,一个被很多人误认为“野鸡大学”,蹭东华大学热点的大学,竟然也有1位校友登上“大国之匠”名单。 分析人士认为,西北工业大学、哈尔滨工业大学等都是我国老牌的军工院校,但是其它高等院校还是应该向这些上榜院校学习。高校培养的人才,对于国家的发展非常重要,这些人才都是国家的栋梁,是我国实现伟大复兴的中流砥柱。 -END- 来源 | EETOP | 整理文章为传播相关技术,版权归原作者所有 |  | 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

摩登3测速登陆_5分钟掌握Python中常见的配置文件

为什么要写配置文件 在开发过程中,我们常常会用到一些固定参数或者是常量。对于这些较为固定且常用到的部分,往往会将其写到一个固定文件中,避免在不同的模块代码中重复出现从而保持核心代码整洁。 这个固定文件我们可以直接写成一个  .py  文件,例如  settings.py  或  config.py ,这样的好处就是能够在同一工程下直接通过  import  来导入当中的部分;但如果我们需要在其他非 Python 的平台进行配置文件共享时,写成单个  .py  就不是一个很好的选择。这时我们就应该选择通用的配置文件类型来作为存储这些固定的部分。目前常用且流行的配置文件格式类型主要有  ini 、 json 、 toml 、 yaml 、 xml  等,这些类型的配置文件我们都可以通过标准库或第三方库来进行解析。 ini ini  即 Initialize 初始化之意,早期是在 Windows 上配置文件的存储格式。 ini  文件的写法通俗易懂,往往比较简单,通常由节(Section)、键(key)和值(value)组成,就像以下形式: [localdb]host = 127.0.0.1user = rootpassword = 123456port = 3306database = mysql Python 本身内置的  configparser  标准库,我们直接就可以用来对  ini  文件进行解析。如我们将上述内容保存在一个名为  db.ini  的文件中,然后使用  read()  方法来进行解析和读取,最后通过  items()  方法来获取指定节点下的所有键值对。 >>> from configparser import ConfigParser>>> cfg = ConfigParser()>>> cfg.read("/Users/Bobot/db.ini")['/Users/Bobot/db.ini']>>> cfg.items("localdb")[('host', '127.0.0.1'), ('user', 'root'), ('password', '123456'), ('port', '3306'), ('database', 'mysql')] 需要注意的是, configparser  默认将值以字符串的形式呈现,所以这也就是为什么我们在  db.ini  文件中没有加引号而是直接将字面量写在上面的原因。 获取到键值对后,我其实直接就将其转换成字典,然后通过解包的方式进行穿参,保持代码简洁: #!pip install pymysqlimport pymysqlfrom configparser import ConfigParsercfg = ConfigParser()cfg.read("/Users/Bobot/db.ini")db_cfg = dict(cfg.items("localdb"))con = pymysql.connect(**db_cfg) json json  格式可以说是我们常见的一种文件形式了,也是目前在互联网较为流行的一种数据交换格式。除此之外, json  有时也是配置文件的一种。 比如  npm (JavaScript 包管理工具类似 Python 的  pip )、以及微软出品的目前被广泛使用的 VSCode 编辑器,都使用  json  编写配置参数。 和  configparser  一样,Python 也内置了  json  标准库,可以通过  load()  和  loads()  方法来导入文件式和字符串的  json  内容。 {    "localdb":{        "host": "127.0.0.1",        "user": "root",        "password": "123456",        "port": 3306,        "database": "mysql"    }} 我们将上述内容保存为  db.json  后进行读取和解析, json  库读取 json 文件相对简单容易,而且很容易解析成 Python 的字典对象。 >>> import json>>> from pprint import pprint>>> >>> with open('/Users/Bobot/db.json') as j:...     cfg = json.load(j)['localdb']... >>> pprint(cfg){'database': 'mysql', 'host': '127.0.0.1', 'password': '123456', 'port': 3306, 'user': 'root'} 使用  json  文件配置的缺点就是语法标准严格限制,为人所诟病之一的就是无法在当中写注释,除非采取  json  类型的其他超集作为替代方案(VSCode 中能写注释的  json  参数配置文件便是代替方案的一种);同时存在嵌套过深的问题,容易导致出错,不宜用来写过长或复杂的参数配置信息。 toml toml  格式(或  tml  格式)是 Github 联合创始人…