标签目录:摩登3注册登录网

摩登3测速登录地址_用于检测裸硅圆片上少量金属污染物的互补性测量技术

摘要:就产品质量和生产环境的清洁度而言,半导体行业是一个要求很高的行业。金属污染对芯片有害,所以应避免裸晶圆片上有金属污染。本文的研究目的是交流解决裸硅圆片上金属污染问题的经验,介绍如何使用互补性测量方法检测裸硅圆片上的少量金属污染物并找出问题根源,解释从多个不同的检测方法中选择适合方法的难度,以及用寿命测量技术检测污染物对热处理的依赖性。 关键字:金属污染,测量,热处理,SPV,TXRF I. 前言 本文旨在解决硅衬底上的污染问题,将讨论三种不同的金属污染。第一个是镍扩散,又称为快速扩散物质[1],它是从晶圆片边缘上的一个污点开始扩散的金属污染。第二个是铬污染,它是从Bulk体区内部扩散到初始氧化膜[2],并在晶圆片上形成了一层较厚的氧化物。第三个是晶圆片边缘周围的不锈钢污染。本文的研究目的是根据金属和图1所示的污染特征找到污染的根源。 图1. 三个金属污染示例的映射图。从左至右:镍扩散的微掩膜缺陷图;较厚的铬氧化沉积层;晶圆片边缘上不锈钢污染电子晶圆片检测(EWS)映射图 II. 材料和方法 对于这些示例,我们是将多个不同的测量工具相互配合使用,才发现金属污染物的存在。 全反射X射线荧光(TXRF)分析仪利用角度极小的X射线激励抛光晶圆片表面,以获得表面上的金属污染物含量的映射图[3]。 气相分解电感耦合等离子体质谱仪(VPD-ICPMS)是通过电离使样品离子化,并使用质谱仪分离离子,进行量化分析,以检测含量极低的金属和几种非金属[4]。 表面光电压(SPV)方法是半导体表征测试所用的一种非接触式技术,其原理是分析在表面电压中照明引起的电荷。表面电荷和照明都可以测量表面电压、氧化物厚度、界面陷阱密度、移动电荷、少数载流子扩散长度和生成寿命[5]。 微波检测光电导衰减(µ-PCD)载流子寿命测量法也是一种非接触式方法,在芯片制造过程中,用于晶圆来料检查、质量控制和过程监测。该方法用激光脉冲照射硅氧化层,产生电子空穴对,以此表征载流子复合寿命。使用微波信号可以监测衰减载流子的浓度瞬变,详见文献[6]。 动态二次离子质谱(DSIMS)可以分析材料从表面到100微米深度或更深的元素组成。该方法使用连续聚焦的一次离子束溅射样品表面,从被溅射脱落的离子化材料中提取部分样品,放到双聚焦质谱仪中,使用静电和磁场根据离子的质荷比分离离子[7]。 KLA 2367检查工具用于扫描缺陷后的特征,显示缺陷程度和映射图,检测尺寸限制在0.16μm以上[8]。该缺陷检测工具目前使用的是裸片对裸片比较方法。 椭偏法用于测量厚度,是一种无损测试方法,主要用于确定Bulk体区材料的光学指标和衬底上沉积或生长的薄层(小于或等于5 nm)的厚度均匀性,详见文献[9]。 最后,光致发光光谱技术是用来表征半导体的光学和电子特性。光致发光(PL)光谱技术是效果很好的研究半导体和半绝缘材料的本征和非本征电子结构的技术,有助于确定杂质含量,识别缺陷复合物,测量半导体的带隙[10]。 III. 测量结果与讨论 A. 案例1:镍,快速扩散物质 第一个案例是通过缺陷检测设备发现的。在晶圆片有效区蚀刻后,许多晶圆片在左四分之一处出现相同的缺陷特征。这些晶圆片都是来自同一供应商的同一批次产品。 然后,从这批来料裸晶圆片中取出若干样片,通过不同的测量技术进行分析。TXRF、VPD-ICPMS和SPV测量方法均未发现任何缺陷,所有圆片洁净无瑕。 这个缺陷是在圆片有效区蚀刻后才检测到的,因此,我们决定先对样片进行快速热氧化(RTO)处理,加热到1,300 K左右,持续大约一分钟,然后,使用SPV测量方法检测,在晶圆片左侧看到一小块污染区[图2]。 然后,将晶圆片置于熔炉中加热到更高的温度(1,100 K,5个小时)。在SPV和µPCD(条件:1,300 K,2小时)仪器上观察到与缺陷检测设备发现的完全相同的特征 [图 3]。 使用VPD-ICPMS测量方法发现了污染成分。如图4所示,在热处理后,测量晶圆上的六个点:三个在晶圆的右侧(点1、2和3),三个在左侧(点4、5和6)。右侧的三个测量点没有污染,左侧的中心点(点5)的镍含量约18×1010 at /cm²。左侧部分的其他两个位置(点4和6)无法测量,因为,液滴实际上已经丢失,这是晶圆片表面高粗糙度的特征,与造成堆层缺陷的镍污染吻合。 最后,在斜面上进行VPD-ICPMS测量,结果表明,污染物来自晶圆的斜面,而不是边缘。这些最终信息使供应商能够找到晶圆与镍构成的金属物质的接触位置。 图2.在RTO处理后的SPV映射 图3.镍特性映射图(从左到右)与SPV、µPCD和缺陷检测技术比较 图4.测量点的VPD-ICPMS映射图 这个案例让我们看到,镍在高温下快速扩散,并且相同测量方法在加热前后的测量结果完全不同。此外,它强调了一个事实,即一种测量方法不足以识别问题的根本原因,因此需要多个不同的测量方法配合使用。 B. 案例2:较厚的铬氧化物沉积 这个案例的突出问题是直列初始氧化物厚度范围超出控制范围,高达控制限值的四倍,较厚的氧化物不是同质,但是位于晶圆片区顶部与缺口相对。当用TXRF的扫频模式测量该晶圆片时,在同一晶圆片区域上检测到的是铬污染物,而不是较高的氧化物厚度[图5]。这种在硅氧化过程中发生铬扩散,因杂质而导致氧化层过厚,在文献[2]中有论述。 VPD-ICPMS和TXRF测量表明,铬污染只有在初始氧化后才可以测量到,而来料晶圆上则没有检测到。裸晶圆片的DSIMS配置文件突出了参考晶圆片与不良晶锭上切下的晶圆片之间的差异。在晶圆片背面,可以观察到在整个LTO层(0到300 nm)和多晶硅层(800 nm)上有铬污染,如图6所示,但Bulk体区和正面没有铬污染。 在初始氧化后,观察到从正面表面向下至100 nm深度存在铬,在背面表面和1500 nm深度存在铬[图7]。 图5. 从左到右:初始氧化物厚度映射图和铬TXRF映射图。 图6.来料受污染晶圆晶背面的DSIMS测量结果 图7.初始氧化后受污染晶圆背面的DSIMS测量结果。 在氧化物厚度0.8到1 nm的晶圆片上做进一步的VPD-ICPMS和TXRF测量,与0.15 nm厚度参考值对比。在TXRF扫频模式下,受污染晶圆片上的平均铬含量在13-15×1010 at /cm²之间,而且特征映射图清晰。在五个不同的点进行VPD-ICPMS测量,如图8所示,点1的铬含量最高为88×1010 at/cm²,点2的铬含量为20×1010 at /cm²,点3的含量为5.5×1010 at/cm² 和点 4和5低于检测限值,约为0.7×1010 at/cm²。 然后进行了多种不同的测试,以测量在初始氧化熔炉内或在初始氧化物脱氧湿法清洗台内可能发生的交叉污染。在这两个测试过程中,被污染的晶圆片依次放置在两个未污染的晶圆片之间,如图9所示。 测试结果显示,在熔炉中可见交叉污染。在VPD-ICPMS上测量未污染晶圆片,铬含量约为4×1010 at /cm²,被污染晶圆片的铬含量约为25×1010 at /cm²。 在湿法清洗台上未观察到交叉污染。 图8.测量点的VPD-ICPMS映射图 图9.初始氧化熔炉内的交叉污染评估 为了验证污染物是否可以去除,先将一些初始氧化晶圆脱氧,然后重新氧化。测试结果良好,铬含量为1.15×1010 at /cm²,参考数值为0.25×1010 at /cm²。 最后,对一些晶圆片进行重新氧化处理,在HV氧化和隧道氧化后,再未检测到任何污染物。因此,铬污染对芯片来说并不是致命的。 所有这些实验使我们能够找到污染的来源。在沉积过程中,大量Cr被掺入LTO中。测试排除了很多假定污染物是因为元器件逐渐老化而从工艺腔体或马弗炉排出的情况。这种情况可以使铬扩散到晶圆表面,详见文献[2]。 C.案例3:晶圆片边缘被不锈钢污染 第三个案例是在晶圆电子检测(EWS)期间发现的。 所有晶圆都来自同一供应商的同一晶锭。 检测裸晶圆片的斜面,VPD-ICPMS测试只测到Cu和Al,而在晶圆的有效面上没有测得任何金属物质。经过第一道热处理(快速热处理(RTP))工序后,在裸片有效面上,除大量的铝、钛、铬和铜外,仍然没有测量到任何其他物质。参考晶圆片仅显示有相同含量的铝金属。 在RTP热处理后进行SPV测量,疑似晶圆片的缺陷特征非常清晰,而且在熔炉处理后变得更加清晰[图10]。在DSIMS分析期间,未观察到厚度测量或µPCD测量在RTP后受到任何影响,也未观察到Epi/Si界面中存在金属污染。 图10.在RTP之后(图顶部)和在RTP和熔炉处理后(图底部),受污染的晶圆(左侧)和参考样片(右侧)的SPV映射图。 相反,在RTP和熔炉工序后,用光致发光方法测量裸晶圆片,测试结果良好。在晶圆的左右边缘可见一些缺陷,凹口在底部。在热处理后,在受污染的晶锭上看到了环状特征。在光致发光图与缺陷率映射图叠加后,可以看到,环状特征的直径与缺陷率映射图的直径不完全相同,这可能有多种原因,例如,表面电荷或钝化[图11]。 最终,供应商成功找到了缺陷的根源并重现了问题,原来是上产线上的一颗螺丝错位,刮擦到晶圆片的正面。在受影响的晶圆片上进行了五次VPD-ICPMS测量,在五个半径不同圆环上收集污染物。第一次测量是在以晶圆片为中心的0到60毫米半径的圆环上,然后,半径依次是60到70毫米,80到90毫米,最后是90到100毫米(晶圆片的边缘)。在0到90mm圆环上没有测量到污染物。然而,在距边缘最近的圆环上测量到钛、铬、铁、镍、钴、铜和钼,这与缺陷的根源相关。 图11.受污染的裸晶圆片的光致发光图(左侧)及其与缺陷率图的叠加图(右侧),热处理后的受污染的裸晶圆片的光致发光图(左侧)及其与缺陷率图的叠加图(右侧)。 寿命测试和直接金属污染测量是互补性技术,应配合使用。需要记住的是,在检测和确定金属污染时,没有完美的测量技术,每种情况都是独特的。 这些特定案例表明,为检测一个问题选用不同的技术不是易事,用寿命测试技术检测污染物依赖热处理。实际上,在裸晶圆片上,任何SPV、TXRF或VPD-ICPMS方法都无法检测到第一种情况的镍污染和第二种情况的铬污染。仅在对晶圆片进行退火处理后,才发生镍扩散,并且在SPV上可见,并且仅在初始氧化工序后,厚度测量才显示出晶圆片上氧化物厚度不均匀。通过TXRF和VPD-ICPMS测量,可以将其表征为铬,并且由于DSIMS分析,才发现其存在于晶圆片Bulk体区内部。 最后,对于第三种情况,在热处理后,晶圆片边缘的环状污染物在SPV测量中变得明显,但只有VPD-ICPMS方法和在晶圆片边缘上收集的特定物质,才让我们得出不锈钢污染的结论。

摩登3测速登录地址_工信部:到2023年电子元器件销售总额达到21000亿元

近日,工业和信息化部印发《基础电子元器件产业发展行动计划(2021-2023年)》,计划中提出对电子元器件到2023年的总体目标,电子元器件销售总额达到21000亿元,力争15家企业营收规模突破100亿元,行业总体创新投入进一步提升,射频滤波器、高速连接器、片式多层陶瓷电容器、光通信器件等重点产品专利布局更加完善。 电子元器件是支撑信息技术产业发展的基石,也是保障产业链供应链安全稳定的关键,为加快电子元器件产业高质量发展,推动产业基础高级化、产业链现代化,促进我国信息技术产业发展,工业和信息化部近日印发了《基础电子元器件产业发展行动计划(2021—2023年)》。 《行动计划》以推动高质量发展为主题,以深化供给侧改革为主线,以改革创新为根本动力,以做强电子元器件产业、夯实信息技术产业基础为目标,明确提出要面向智能终端、5G、工业互联网、数据中心、新能源汽车等重点市场,推动基础电子元器件产业实现突破,并增强关键材料、设备仪器等供应链保障能力。 同时,针对当前产业发展存在不足,《行动计划》提出要实施重点产品高端提升、重点市场应用推广、智能制造、绿色制造等行动,并开展提升产业创新能力、强化市场应用推广、夯实配套产业基础、引导产业转型升级、促进行业质量提升、加强公共平台建设、完善人才引育机制等重点工作,推动基础电子元器件产业提质增效,加快提升产业链供应链现代化水平。 关于印发《基础电子元器件产业发展行动计划(2021-2023年)》的通知 工信部电子〔2021〕5号 各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门,各有关单位:   现将《基础电子元器件产业发展行动计划(2021-2023年)》印发给你们,请结合实际认真贯彻落实。 工业和信息化部 2021年1月15日 基础电子元器件产业发展行动计划 (2021—2023年)     信息技术产业是关系国民经济安全和发展的战略性、基础性、先导性产业,也是世界主要国家高度重视、全力布局的竞争高地。电子元器件是支撑信息技术产业发展的基石,也是保障产业链供应链安全稳定的关键。当前我国电子元器件产业存在整体大而不强、龙头企业匮乏、创新能力不足等问题,制约信息技术产业发展。面对百年未有之大变局和产业大升级、行业大融合的态势,加快电子元器件及配套材料和设备仪器等基础电子产业发展,对推进信息技术产业基础高级化、产业链现代化,乃至实现国民经济高质量发展具有重要意义。为深入贯彻落实党中央、国务院决策部署,持续提升保障能力和产业化水平,支持电子元器件领域关键短板产品及技术攻关,特制定本行动计划。 一 总体要求   (一)指导思想   以习近平新时代中国特色社会主义思想为指导,全面贯彻落实党的十九大和十九届二中、三中、四中、五中全会精神,以推动高质量发展为主题,以深化供给侧结构性改革为主线,以改革创新为根本动力,以做强电子元器件产业、夯实信息技术产业基础为目标,以关键核心技术为主攻方向,支持重点行业市场应用,建立健全产业链配套体系,推动基础电子元器件产业实现高质量发展,保障国家信息技术产业安全。    (二)总体目标   到2023年,优势产品竞争力进一步增强,产业链安全供应水平显著提升,面向智能终端、5G、工业互联网等重要行业,推动基础电子元器件实现突破,增强关键材料、设备仪器等供应链保障能力,提升产业链供应链现代化水平。    ——产业规模不断壮大。电子元器件销售总额达到21000亿元,进一步巩固我国作为全球电子元器件生产大国的地位,充分满足信息技术市场规模需求。    ——技术创新取得突破。突破一批电子元器件关键技术,行业总体创新投入进一步提升,射频滤波器、高速连接器、片式多层陶瓷电容器、光通信器件等重点产品专利布局更加完善。    ——企业发展成效明显。形成一批具有国际竞争优势的电子元器件企业,力争15家企业营收规模突破100亿元,龙头企业营收规模和综合实力有效提升,抗风险和再投入能力明显增强。 二 重点工作    (一)提升产业创新能力    攻克关键核心技术。实施重点产品高端提升行动,面向电路类元器件等重点产品,突破制约行业发展的专利、技术壁垒,补足电子元器件发展短板,保障产业链供应链安全稳定。 专栏1  重点产品高端提升行动 电路类元器件。 重点发展微型化、片式化阻容感元件,高频率、高精度频率元器件,耐高温、耐高压、低损耗、高可靠半导体分立器件及模块,小型化、高可靠、高灵敏度电子防护器件,高性能、多功能、高密度混合集成电路。 连接类元器件。 重点发展高频高速、低损耗、小型化的光电连接器,超高速、超低损耗、低成本的光纤光缆,耐高压、耐高温、高抗拉强度电气装备线缆,高频高速、高层高密度印制电路板、集成电路封装基板、特种印制电路板。 机电类元器件。 重点发展高压、大电流、小型化、低功耗控制继电器,小型化、高可靠开关按钮,小型化、集成化、高精密、高效节能微特电机。 传感类元器件。重点发展小型化、低功耗、集成化、高灵敏度的敏感元件,温度、气体、位移、速度、光电、生化等类别的高端传感器,新型MEMS传感器和智能传感器,微型化、智能化的电声器件。 功能材料类元件。重点发展高磁能积、高矫顽力永磁元件,高磁导率、低磁损耗软磁元件,高导热、电绝缘、低损耗、无铅环保的电子陶瓷元件。 光通信器件。重点发展高速光通信芯片、高速高精度光探测器、高速直调和外调制激光器、高速调制器芯片、高功率激光器、光传输用数字信号处理器芯片、高速驱动器和跨阻抗放大器芯片。    构建多层次联合创新体系。支持企业、高等院校及科研院所加强合作,在电子元器件领域探索成立制造业创新中心,加大关键共性技术、前沿引领技术、现代工程技术、颠覆性技术研发力度,搭建产学研用紧密结合的协同创新和成果转化平台。鼓励各地围绕特色或细分领域,开展关键技术研发与产业化,形成差异化发展。    完善知识产权布局。鼓励企业、高等院校及科研院所提升知识产权保护意识,完善知识产权管理制度并开展国内外知识产权布局。探索建立专利池,围绕电子元器件开展专利分析和预警。开展知识产权试点企业培育工作。    (二)强化市场应用推广   支持重点行业市场应用。实施重点市场应用推广行动,在智能终端、5G、工业互联网和数据中心、智能网联汽车等重点行业推动电子元器件差异化应用,加速产品吸引社会资源,迭代升级。 专栏2  重点市场应用推广行动 智能终端市场。 瞄准智能手机、穿戴式设备、无人机、VR/AR设备、环境监测设备等智能终端市场,推动微型片式阻容元件、微型大电流电感器、微型射频滤波器、微型传感器、微特电机、高端锂电等片式化、微型化、轻型化、柔性化、高性能的电子元器件应用。 5G、工业互联网和数据中心市场。 抢抓全球5G和工业互联网契机,围绕5G网络、工业互联网和数据中心建设,重点推进射频阻容元件、中高频元器件、特种印制电路板、高速传输线缆及连接组件、光通信器件等影响通信设备高速传输的电子元器件应用。 新能源汽车和智能网联汽车市场。 把握传统汽车向电动化、智能化、网联化的新能源汽车和智能网联汽车转型的市场机遇,重点推动车规级传感器、电容器(含超级电容器)、电阻器、频率元器件、连接器与线缆组件、微特电机、控制继电器、新型化学和物理电池等电子元器件应用。 工业自动化设备市场。利用我国工业领域自动化、智能化升级的机遇,面向工业机器人和智能控制系统等领域,重点推进伺服电机、控制继电器、传感器、光纤光缆、光通信器件等工业级电子元器件的应用。 高端装备制造市场。面向我国蓬勃发展的高铁列车、民用航空航天、海洋工程装备、高技术船舶、能源装备等高端装备制造领域,推动海底光电缆、水下连接器、功率器件、高压直流继电器等高可靠电子元器件的应用。    强化产业链深层次合作。推动电子元器件及其配套材料和设备仪器企业、整机企业加强联动,共同开展产品研制,加快新型电子元器件的产业化应用。引导上下游企业通过战略联盟、资本合作、技术联动等方式,形成稳定合作关系。    加速创新型产品应用推广。面向人工智能、先进计算、物联网、新能源、新基建等新兴需求,开发重点应用领域急需的小型化、高性能、高效率、高可靠电子元器件,推动整机企业积极应用创新型产品,加速元器件产品迭代升级。    (三)夯实配套产业基础   突破关键材料技术。支持电子元器件上游电子陶瓷材料、磁性材料、电池材料等电子功能材料,电子浆料等工艺与辅助材料,高端印制电路板材料等封装与装联材料的研发和生产。提升配套能力,推动关键环节电子专用材料研发与产业化。    提升设备仪器配套能力。支持技术难度大、应用价值高、通用性强、对电子元器件行业带动大的配套电子专用设备与仪器,如刻蚀显影设备等工艺设备、显微CT等检测分析仪器的研发及产业化,提升设备仪器质量和可靠性水平。    健全产业配套体系。鼓励和引导化工、有色金属、轻工机械、设备仪器等企业进入电子元器件领域,开展关键材料、设备的研发和生产,推进产学研用协同创新,实现全产业链协同发展,增强试验验证能力,提升关键环节配套水平。    (四)引导产业转型升级   提升智能化水平。引导企业搭建数字化设计平台、全环境仿真平台和材料、工艺、失效分析数据库,基于机器学习与人工智能技术,推进关键工序数字化、网络化改造,优化生产工艺及质量管控系统,开展智能工厂建设,提升智能制造水平。 专栏3   智能制造推进行动 推广智能化设计。 引导国内软件企业开发各类电子元器件仿真设计软件,鼓励使用虚拟现实、数字孪生等先进技术开展工业设计,提高企业设计水平。 加快智能化改造。 围绕连接器与线缆组件、电子变压器、电声器件、微特电机等用工量大且以小批量、多批次订单为主的分支行业,探索和推广模块化、数字化生产方式,加快智能化升级。 培育工业互联网平台。 鼓励和支持产业基础较好的分支行业,探索工业互联网建设模式,鼓励龙头企业面向行业开放共享业务系统,带动产业链上下游企业开展协同设计和协同供应链管理。    推广绿色制造。推进全行业节能节水技术改造,加快应用清洁高效生产工艺,开展清洁生产,降低能耗和污染物排放强度,实现绿色生产。优化电子元器件产品结构设计,开发高附加值、低消耗、低排放产品。制定电子元器件行业绿色制造相关标准,完善绿色制造体系。 专栏4   绿色制造提升行动 建设绿色工厂。 按照厂房集约化、原料无害化、生产洁净化、废物资源化、能源低碳化原则引导电子元器件企业建设绿色工厂,加大节能环保投入,实施节能环保技术提升工程,鼓励企业采用信息化、智能化技术处理污染物并实时监控,将企业的环保执行措施与企业信用等级挂钩。 生产绿色产品。 严格执行《电器电子产品有害物质限制使用管理办法》等政策,鼓励骨干企业开展产品全生命周期的绿色化设计,加快轻量化、模块化、集成化、高可靠、长寿命、易回收的新型电子元器件产品应用。 发展绿色园区。 加强电子元器件相关产业园区企业与其他企业的合作,推动基础设施共建共享。发展循环经济,加强余热余压废热资源和水资源循环利用。 搭建绿色供应链。支持骨干企业实施可持续的绿色供应链管理战略,实施绿色伙伴式供应商管理,加强对上游供应商的环保考核,优先将绿色工厂发展成供应商,优先采购绿色产品。    培育优质企业。鼓励龙头企业通过兼并重组、资本运作等方式整合资源、扩大生产规模、增强核心竞争力、提高合规履责和抗风险能力。培育一批具有自主知识产权、产品附加值高、有核心竞争力的专精特新“小巨人”和制造业单项冠军企业。    (五)促进行业质量提升   加强标准化工作。加强关键核心技术和基础共性技术的标准研制,持续提升标准的供给质量和水平。引导社会团体加快制定发布具有创新性和国际性的团体标准。鼓励企事业单位和专家积极参与国际标准化活动,开展国际标准制定。    提升质量品牌效益。优化产品设计、改造技术设备、完善检验检测,推广先进质量文化与技术。引导企业建立以质量为基础的品牌发展战略,丰富品牌内涵,提升品牌形象和影响力。开展质量兴业、品牌培育等活动,定期发布质量品牌报告。    优化市场环境。引导终端企业优化电子元器件产品采购模式,倡导优质廉价,避免低价恶性竞争、哄抬价格、肆意炒作等非理性市场行为,推动构建公平、公正、开放、有序的市场竞争环境。    (六)加强公共平台建设   建设分析评价公共平台。支持有能力、有资质的企事业单位建设国家级电子元器件分析评价公共服务平台,加强质量品质和技术等级分类标准建设,围绕电子元器件各领域开展产品检测分析、评级、可靠性、应用验证等服务,为电子系统整机设计、物料选型提供依据。    建设科技服务平台。支持地方、园区、企事业单位建设一批公共服务平台,开展知识产权培训与交易、科技成果评价、市场战略研究等服务。鼓励建设专用电子元器件生产线,为MEMS传感器、滤波器、光通信模块驱动芯片等提供流片服务。    建设创新创业孵化平台。支持电子元器件领域众创、众包、众扶、众筹等创业支撑平台建设,推动建立一批基础电子元器件产业生态孵化器、加速器,鼓励为初创企业提供资金、技术、市场应用及推广等扶持。    (七)完善人才引育机制   加大人才培养力度。深化产教融合,推动高等院校优化相关学科建设和专业布局。鼓励企业建立企业研究院、院士和博士后工作站等创新平台,建立校企结合的人才综合培训和实践基地,支持企业开展员工国内外在职教育培训。    加强人才引进培育。多渠道引进高端人才和青年人才,加快形成具有国际领先水平的专家队伍。发挥行业组织及大专、高等院校作用,鼓励企业培育和引进掌握关键技术的科技领军人才和团队,为产业发展提供智力支持。    引导人才合理流动。引导企业通过合规途径招聘人才,保障人才在企业间的正常流动,加强职业道德宣传,降低人员流动损失,鼓励企业为人才创造有利的成长空间,提升福利待遇,完善人才职业晋升通道,提升电子元器件行业人才归属感。 三 保障措施   …

摩登3新闻554258:_华为桌面一体机曝光:四种形态 超薄设计

企查查APP显示,华为技术有限公司于12月25日授权公开了四项“桌面一体机”专利信息。 专利公开号分别为CN306249026S、CN306249027S、CN306249028S、CN306249030S。 四向专利对应了四种桌面一体机的形态,全部超薄设计。专利介绍中称,这些外观设计产品用于视频会议与信息交互等功能。 本外观设计产品的设计要点:在于形状。有的采用45度弯角底座,有的采用支架设计,有的则是直上直下的底座。 这些一体机的散热孔位置也不一样,有的在背部,有的在侧面。 当然,这些只是华为申请的专利,实机到底采用哪种设计方案还要看华为的最终拍板,大家觉得哪款好看呢? 前不久,华为面向企业用户发布首款商用台式机MateStation B515,搭载AMD锐龙处理器,8GB+1TB、8GB+256GB两个版本,售价分别为4498元、4598元。 其最大的特色是支持华为多屏协同功能,配套键盘内置了NFC,支持手机电脑一碰即连。手机贴到Shift区域,即可把手机屏幕镜像到显示器上,支持双向拖拽,文件互传。 END 来源:快科技 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

摩登3登录网站_常见加密算法DES、AES和RSA的原理和特点

编排 | strongerHuang 微信公众号 | 嵌入式专栏 今天主要总结下常用的对称性加密算法DES和AES,非对称性加密算法RSA。 1 DES加密算法 1.DES含义 DES全称为Data Encryption Standard,即数据加密标准,是一种使用密钥加密的块算法,1977年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),并授权在非密级政府通信中使用,随后该算法在国际上广泛流传开来。 DES是对称性加密里常见的一种,是一种使用秘钥加密的块算法。秘钥长度是64位(bit), 超过位数秘钥被忽略。所谓对称性加密,加密和解密秘钥相同。对称性加密一般会按照固定长度,把待加密字符串分成块。不足一整块或者刚好最后有特殊填充字符。 常见的填充模式有:’pkcs5’、’pkcs7’、’iso10126’、’ansix923’、’zero’ 类型,包括DES-ECB、DES-CBC、DES-CTR、DES-OFB、DES-CFB。 2. DES算法原理 DES算法的入口参数:Key、Data、Mode。 Key为8个字节共64位,是DES算法的工作秘钥; Data也为8个字节64位,是要被加密或解密的数据; Mode为DES的工作方式,有两种:加密或解密。 3.DES加密原理 DES 使用一个 56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小。这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。 使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。DES 使用 16 个循环,使用异或,置换,代换,移位操作四种基本运算。 4.DES算法特点 分组比较短、秘钥太短、密码生命周期短、运算速度较慢。  2 AES加密算法 1.AES含义 AES,高级加密标准,在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。 严格地说,AES和Rijndael加密法并不完全一样(虽然在实际应用中二者可以互换),因为Rijndael加密法可以支持更大范围的区块和密钥长度:AES的区块长度固定为128 比特,密钥长度则可以是128,192或256比特; 而Rijndael使用的密钥和区块长度可以是32位的整数倍,以128位为下限,256比特为上限。包括AES-ECB,AES-CBC,AES-CTR,AES-OFB,AES-CFB。 2.AES加密原理 AES加密过程涉及到4种操作,分别是字节替代、行移位、列混淆和轮密钥加。解密过程分别为对应的逆操作。由于每一步操作都是可逆的,按照相反的顺序进行解密即可恢复明文。加解密中每轮的密钥分别由初始密钥扩展得到。算法中16个字节的明文、密文和轮密钥都以一个4×4的矩阵表示。 3.AES算法特点 运算速度快,安全性高,资源消耗少  3 RSA加密算法 1.RAS含义 RSA加密算法是一种非对称加密算法,这种算法非常可靠,密钥越长,它就越难破解。根据已经披露的文献,目前被破解的最长RSA密钥是768个二进制位。 也就是说,长度超过768位的密钥,还无法破解(至少没人公开宣布)。因此可以认为,1024位的RSA密钥基本安全,2048位的密钥极其安全。 2.RAS算法原理 在了解RAS算法原理之前,先了解一下非对称加密的过程: 非对称加密是通过两个密钥(公钥-私钥)来实现对数据的加密和解密的。公钥用于加密,私钥用于解密。对于非对称的加密和解密为什么可以使用不同的密钥来进行,这些都是数学上的问题了。不同的非对称加密算法也会应用到不同的数学知识。接下来就来看看RSA算法是怎么来对数据进行加密的。 下面是RAS算法的加密算法流程图: 3.RAS算法特点 不需要进行密钥传递,提高了安全性 可以进行数字签名认证 加密解密效率不高,一般只适用于处理小量数据(如:密钥) 容易遭受小指数攻击 常见的几种加密算法先总结到这,如果大家对加密的具体过程感兴趣的话,可以自己上网了解更多算法知识~ 免责声明: 本文部分素材来源网络,版权归原作者所有。如涉及作品版权问题,请与我联系删除。 ———— 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

摩登3平台登录_深入浅出!二叉树详解,还包含C代码

【导读】:树是数据结构中的重中之重,尤其以各类二叉树为学习的难点。在面试环节中,二叉树也是必考的模块。本文主要讲二叉树操作的相关知识,梳理面试常考的内容。请大家跟随小编一起来复习吧。 本篇针对面试中常见的二叉树操作作个总结: 前序遍历,中序遍历,后序遍历; 层次遍历; 求树的结点数; 求树的叶子数; 求树的深度; 求二叉树第k层的结点个数; 判断两棵二叉树是否结构相同; 求二叉树的镜像; 求两个结点的最低公共祖先结点; 求任意两结点距离; 找出二叉树中某个结点的所有祖先结点; 不使用递归和栈遍历二叉树; 二叉树前序中序推后序; 判断二叉树是不是完全二叉树; 判断是否是二叉查找树的后序遍历结果; 给定一个二叉查找树中的结点,找出在中序遍历下它的后继和前驱; 二分查找树转化为排序的循环双链表; 有序链表转化为平衡的二分查找树; 判断是否是二叉查找树。 1 前序遍历,中序遍历,后序遍历; 1.1 前序遍历 对于当前结点,先输出该结点,然后输出它的左孩子,最后输出它的右孩子。以上图为例,递归的过程如下: 输出 1,接着左孩子; 输出 2,接着左孩子; 输出 4,左孩子为空,再接着右孩子; 输出 6,左孩子为空,再接着右孩子; 输出 7,左右孩子都为空,此时 2 的左子树全部输出,2 的右子树为空,此时 1 的左子树全部输出,接着 1 的右子树; 输出 3,接着左孩子; 输出 5,左右孩子为空,此时 3 的左子树全部输出,3 的右子树为空,至此 1 的右子树全部输出,结束。 而非递归版本只是利用 stack 模拟上述过程而已,递归的过程也就是出入栈的过程。 /* 前序遍历递归版 */void PreOrderRec(Node * node){    if (node == nullptr)        return;    cout << node->data << " ";   // 先输出当前结点       PreOrderRec(node->left);     // 然后输出左孩子    PreOrderRec(node->right);    // 最后输出右孩子}/* 前序遍历非递归版 */void PreOrderNonRec(Node * node){    if (node == nullptr)        return;    stack  S;     cout << node->data <<  " ";     S.push(node);     node = node->left;      while (!S.empty() || node)     {          while (node)         {             cout << node->data <<  " "; // 先输出当前结点               S.push(node);             node = node->left;         // 然后输出左孩子         }                              //  while 结束意味着左孩子已经全部输出         node = S.top()->right;         // 最后输出右孩子         S.pop();     } } 1.2 中序遍历 对于当前结点,先输出它的左孩子,然后输出该结点,最后输出它的右孩子。以(1.1)图为例: 1–>2–>4,4 的左孩子为空,输出 4,接着右孩子; 6 的左孩子为空,输出 6,接着右孩子; 7 的左孩子为空,输出 7,右孩子也为空,此时 2 的左子树全部输出,输出 2,2 的右孩子为空,此时 1 的左子树全部输出,输出 1,接着 1 的右孩子; 3–>5,5 左孩子为空,输出 5,右孩子也为空,此时 3 的左子树全部输出,而 3 的右孩子为空,至此 1 的右子树全部输出,结束。 /* 中序遍历递归版 */void InOrderRec(Node * node){    if (node == nullptr)        return;    InOrderRec(node->left);     // 先输出左孩子    cout << node->data << " ";  // 然后输出当前结点    InOrderRec(node->right);    // 最后输出右孩子}/* 前序遍历非递归版 */void InOrderNonRec(Node * node){    if (node == nullptr)        return;    stack  S;     S.push(node);     node = node->left;      while (!S.empty() || node)     {          while (node)         {             S.push(node);             node = node->left;         }                             // …

摩登3注册网站_Sourceability:助推国内半导体供应链数字化转型

“在这个时代,数字化一切和数字化转型是大势所趋,所有行业,包括供应链在内,要么数字化,要么被淘汰。” 11月6日,在ASPENCORE举办的“全球分销与供应链领袖峰会”上,Sourceability亚太区执行总经理王震旻向业界传达了对电子行业数字化供应链的独到见解。 (Sourceability:国内行业数字化现状) 未来的供应链以数字化为特征,传统供应链需要数字化转型,期间整个产业可能要耗费五年、十年、甚至二十年的时间。2020年全球新冠疫情的爆发,“非接触式经济”被推到了空前的热度。在中国电子产业内,有一些新的变化和机遇值得关注。 数字化转型在中国发展得非常快。王震旻引用了国家工业信息安全发展研究中心今年的数据,该数据显示,目前中国已经有11%的企业成为了数字化转型的领导者,而这个数字在2018年的时候还只有7%,这意味着在过去几年里,成功进行数字化转型的企业数量已经超过了50%。“这个速度未来还会更快。”王震旻表示。 一般企业在数字化转型时,会有六大重要方向:第一,提升全业务全流程数据透明;第二,营销与销售全渠道数字化;第三,巩固和提升企业供应链韧性;第四,打造“未来系统”更新IT适应性;第五,以柔性组织发挥数字化人才能力;第六,培育务实创新、敏捷创新能力。 王震旻表示,针对元器件供应链的数字化,需要大家把聚焦放在提升业务流程透明度、企业供应链韧性和未来IT适应性上。与此同时,Sourceability将在中国市场推动电子产业供应链的信息透明化。 (Sourceability王震旻在ASPENCORE颁奖礼演讲) Sourceability成立于2015年,是一家德资背景、分支机构遍布全球的技术公司。其旨在通过可靠的元器件供应数据和技术支持,满足产品设计和工程的采购需求;通过一整套具有前瞻性的数字产品和服务,支持电子行业供应链。Sourceability全球的研发团队超过70人,主要为欧美市场提供供应链数字化支持。 当前,Sourceability主要服务于欧美大型OEM、EMS终端客户。它可提供2600多家可追溯合作全球供应商,其中包括原厂、分销商、代理商等;同时还拥有超过5.5亿个物料的产品供应数据,替代产品信息、合规信息、产品生命周期信息与数据表;另外,也可通过API技术支持和企业ERP进行对接,实现实时访问产品供应数据。

摩登三1960_英威腾又双叒叕参展啦!

第二届中国(华南)国际机器人与自动化展览会是中国国际工业博览会在华南地区以机器人与自动化相关技术和装备为核心精心打造的专业展,包括英威腾在内的上百家展商将落地“华南工业展览之都”广东东莞。英威腾将携众多系统解决方案和产品参展,更有新品首次亮相。 展会信息 名称:中国(华南)国际机器人与自动化展 览会时间:2020年12月2—4日 地点:广东现代国际展览中心(东莞) 英威腾展位号:3号馆C3086 此次展会,英威腾将展出面向行业应用的智能制造系统解决方案,其中包含纺织行业的喷射织机电控系统、印包行业的单包机系统集成方案、压缩机行业的无油水润滑螺杆空压机方案等。 另外还将展出空气悬浮鼓风机、LED固晶机、高速平面口罩机、工业物联网、木工封边机、高速单线切割机、锂电池压力化成机等系统解决方案。 解决方案抢先看 1、折叠机系统集成方案 以英威腾控制器+伺服+变频器+触摸屏为核心的自动抽纸折叠机生产线控制系统应用方案,系统反应迅速,同步性能优异,生产速度大幅度提升。 2、织机永磁同步电机直驱系统 该系统主要用于驱动喷水、喷气织机主轴,采用高能效永磁同步直驱电机及GD350-12系列专用变频驱动器,电机转子直接安装在织机主轴端、定子安装在织机机架上,省去了原电磁刹车盘、异步电机安装底板及皮带轮,实现真正直驱方案。 3、椭圆形丝网印花机系统解决方案 该系统方案采用AX系列控制器与DA系列伺服系统搭配,有效缩减高速模式下印刷轴的刹车距离,运用电子齿轮运动控制功能实现转送轴同步,启动过程平稳且停止位置精准。另有定制化云服务,能够实现程序优化更新、生产实时跟踪监控等远程控制功能。 4、木工封边机系统解决方案 采用VS系列10寸彩色触摸屏,丰富界面,增强了人机交互;使用编码器替换行程开关的方案,提升定位控制精度,节省成本和调试工时;全套采用英威腾产品系列,具有极高的性价比;整机速度达25m/min,生产效率大大提升。 新品亮相 欲知更多英威腾系统解决方案和产品,欢迎您莅临展会现场。

摩登3平台登录_探索Teledyne e2v的最新ADC概念,可实现P到Ka波段直接采样

法国格勒诺布尔 – Media OutReach – 2020年11月24日 – Teledyne e2v不断创新、致力于高分辨混合信号解决方案,进一步彰显其致力于革新射频系统的承诺。该公司已成功演示了其工程团队目前正在测试的下一代数据转换器技术。 该12位EV12PS640是Teledyne e2v最近发布的微波数模转换器(DAC)设备EV12DD700的补充,代表着模数转换器(ADC)发展的新里程碑。这一开创性的模数转换器概念证明能够提供超出目前市场上任何产品范围的性能参数,支持11G采样率,可实现超高频(SHF)直接采样,并一直延伸到Ka频段(26GHz及以上)。EV12PS640将提供非常宽的动态范围。 该公司已准备好EV12PS640微波模数转换器和 EV12DD700数模转换器的视频演示,可在此处查看:EV12PS640微波模数转换器演示及EV12DD700数模转换器演示。 直接微波采样有许多好处。首先,它消除了对频率转换的需求,这意味着将大大降低信号失真的风险。其次,它提供软件定义通用性,贯穿多个频段,最高可达Ka频段。这表示系统更容易针对不同的应用场景进行优化,同时也为系统提供了一个动态配置的平台。通过直接微波采样方法,可以显著简化数据转换硬件。Teledyne e2v首次推出50欧姆单端输入(用于时钟和模拟输入),从而压制了对巴伦的需求,减少物料清单和相关不动产,这样就更容易与射频系统对接(射频系统通常在50欧姆特性阻抗下运作)。 基于此,直接微波采样逐渐证明其在有限功率预算下或空间受限系统中,或在一些某些程度配置要求的场所具有极大的优势。现在,通过直接采样到Ka波段频率,Teledyne e2v必定能够应对广泛的高端射频应用。因此,EV12PS640将对航空电子、军事、航天以及测试和测量领域的未来射频架构至关重要。

摩登3新闻554258:_PCB线路设计制作百句术语大全!

作为一个电子工程师设计电路是一项必备的硬功夫,但是原理设计再完美,如果电路板设计不合理,性能将大打折扣,严重时甚至不能正常工作。下面小编为大家整理了104条PCB线路设计制作术语合集,希望能提升你的工作效率! 1、Annular Ring 孔环 指绕接通孔壁外平贴在板面上的铜环而言。在内层板上此孔环常以十字桥与外面大地相连,且更常当成线路的端点或过站。在外层板上除了当成线路的过站之外,也可当成零件脚插焊用的焊垫。与此字同义的尚有 Pad(配圈)、 Land (独立点)等。 2、Artwork 底片在电路板工业中,此字常指的是黑白底片而言。至于棕色的“偶氮片”(Diazo Film)则另用 Phototool 以名之。PCB 所用的底片可分为“原始底片”Master Artwork 以及翻照后的“工作底片”Working Artwork 等。 3、Basic Grid 基本方格指电路板在设计时,其导体布局定位所着落的纵横格子。早期的格距为 100 mil,目前由于细线密线的盛行,基本格距已再缩小到 50 mil。 4、Blind Via Hole 盲导孔指复杂的多层板中,部份导通孔因只需某几层之互连,故刻意不完全钻透,若其中有一孔口是连接在外层板的孔环上,这种如杯状死胡同的特殊孔,称之为“盲孔”(Blind Hole)。 5、Block Diagram 电路系统块图将组装板及所需的各种零组件,在设计图上以正方形或长方形的空框加以框出, 且用各种电性符号,对其各框的关系逐一联络,使组成有系统的架构图。 6、Bomb Sight 弹标原指轰炸机投弹的瞄准幕。PCB 在底片制作时,为对准起见也在各角落设置这种上下两层对准用的靶标,其更精确之正式名称应叫做Photographers’ Target。 7、Break-away panel 可断开板指许多面积较小的电路板,为了在下游装配线上的插件、放件、焊接等作业的方便起见,在 PCB 制程中,特将之并合在一个大板上,以进行各种加工。完工时再以跳刀方式,在各独立小板之间进行局部切外形(Routing)断开,但却保留足够强度的数枚“连片”(Tie Bar 或Break-away Tab),且在连片与板边间再连钻几个小孔;或上下各切 V 形槽口,以利组装制程完毕后,还能将各板折断分开。这种小板子联合组装方式,将来会愈来愈多,IC卡即是一例。 8、Buried Via Hole 埋导孔指多层板之局部导通孔,当其埋在多层板内部层间成为“内通孔”,且未与外层板“连通”者,称为埋导孔或简称埋孔。 9、Bus Bar 汇电杆多指电镀槽上的阴极或阳极杆本身,或其连接之电缆而言。另在“制程中”的电路板,其金手指外缘接近板边处,原有一条连通用的导线(镀金操作时须被遮盖),再另以一小窄片(皆为节省金量故需尽量减小其面积)与各手指相连,此种导电用的连线亦称 Bus Bar。而在各单独手指与 Bus Bar 相连之小片则称Shooting Bar。在板子完成切外形时,二者都会一并切掉。 10、CAD电脑辅助设计Computer Aided Design,是利用特殊软体及硬体,对电路板以数位化进行布局(Layout),并以光学绘图机将数位资料转制成原始底片。此种 CAD对电路板的制前工程,远比人工方式更为精确及方便。 11、Center-to-Center Spacing 中心间距指板面上任何两导体其中心到中心的标示距离(Nominal Distance)而言。若连续排列的各导体,而各自宽度及间距又都相同时(如金手指的排列),则此“中心到中心的间距”又称为节距(Pitch)。 12、Clearance 余地、余隙、空环指多层板之各内层上,若不欲其导体面与通孔之孔壁连通时,则可将通孔周围的铜箔蚀掉而形成空环,特称为“空环”。又外层板面上所印的绿漆与各孔环之间的距离也称为 Clearance 。不过由于目前板面线路密度愈渐提高,使得这种绿漆原有的余地也被紧逼到几近于无了。 13、Component Hole 零件孔指板子上零件脚插装的通孔,这种脚孔的孔径平均在 40 mil 左右。现在SMT盛行之后,大孔径的插孔已逐渐减少,只剩下少数连接器的金针孔还需要插焊,其余多数 SMD 零件都已改采表面粘装了。 14、Component Side 组件面早期在电路板全采通孔插装的时代,零件一定是要装在板子的正面,故又称其正面为“组件面”。板子的反面因只供波焊的锡波通过,故又称为“焊锡面”(Soldering Side) 。目前 SMT 的板类两面都要粘装零件,故已无所谓“组件面“或“焊锡面”了,只能称为正面或反面。通常正面会印有该电子机器的制造厂商名称,而电路板制造厂的 UL 代字与生产日期,则可加在板子的反面。 15、Conductor Spacing 导体间距指电路板面的某一导体,自其边缘到另一最近导体的边缘,其间所涵盖绝缘底材面的跨距,即谓之导体间距,或俗称为间距。又,Conductor 是电路板上各种形式金属导体的泛称。 16、Contact Area 接触电阻在电路板上是专指金手指与连接器之接触点,当电流通过时所呈现的电阻之谓。为了减少金属表面氧化物的生成,通常阳性的金手指部份,及连接器的阴性卡夹子皆需镀以金属,以抑抵其“接载电阻”的发生。其他电器品的插头挤入插座中,或导针与其接座间也都有接触电阻存在。 17、Corner Mark 板角标记电路板底片上,常在四个角落处留下特殊的标记做为板子的实际边界。若将此等标记的内缘连线,即为完工板轮廓外围(Contour)的界线。 18、Counterboring 定深扩孔,埋头孔电路板可用螺丝锁紧固定在机器中,这种匹配的非导通孔(NPTH),其孔口须做可容纳螺帽的“扩孔”,使整个螺丝能沉入埋入板面内,以减少在外表所造成的妨碍。 19、Crosshatching 十字交叉区电路板面上某些大面积导体区,为了与板面及绿漆之间都得到更好的附着力起见,常将感部份铜面转掉,而留下多条纵横交叉的十字线,如网球拍的结构一样,如此将可化解掉大面积铜箔,因热膨胀而存在的浮离危机。其蚀刻所得十字图形称为 Crosshatch,而这种改善的做法则称为 Crosshatching。 20、Countersinking 锥型扩孔,喇叭孔是另一种锁紧用的螺丝孔,多用在木工家俱上,较少出现精密电子工业中。 21、Crossection Area 截面积电路板上线路截面积的大小,会直接影响其载流能力,故设计时即应首先列入见,常将感部份铜面转掉,而留下多条纵横交叉的十字线,如网球拍的结构一样,如此将可化解掉大面积铜箔,因热膨胀而存在的浮离危机。其蚀刻所得十字图形称为 Crosshatch,而这种改善的做法则称为 Crosshatching。 22、Current-Carrying Capability 载流能力指板子上的导线,在指定的情况下能够连续通过最大的电流强度(安培),而尚不致引起电路板在电性及机械性质上的劣化 (Degradation),此最大电流的安培数,即为该线路的“载流能力”。 23、Datum Reference 基准参考在…