摩登3平台开户_语音业务多系统融合技术研究与实现

引 言

在信息时代,出于地域、环境和安全保密等因素的考虑, 为保证指挥员命令及时准确的下达,往往需要建立多种任务指挥通信系统。指挥通信系统的多样化带来的是通信保障手段的灵活多变和任务通信保障能力的提升,但经常由于各语音系统采用不同的技术体制,彼此之间相互独立,因此无法实现互联互通和资源整合。如果各系统能够互联互通,各系统之间将是一个完整的整体,指挥员的一个指挥终端可以指挥各个系统的操作终端,达到 一呼百应 的指挥效果,最大程度提升指挥效能。为解决上述问题,迫切需要研究指挥通信语音业务多系统融合技术,尽可能将现有的各种通信业务系统进行有效融合,实现各系统之间的互通互联,有效提高指挥效率[1-4]。

1 现有语音指挥通信保障模式存在的主要问题

在现有通信保障中,当前语音通信系统较多,各系统之间设备无法互联互通,通常会遇到以下 2 个方面的困难:

(1) 指挥调度能力覆盖不足。目前的指挥调度系统以有线为主,主要覆盖指挥楼内的固定调度单机,受到传输手段、终端数量等约束条件限制,提供的指挥调度能力非常有限,一旦点位分散,任务全面铺开,现有指挥调度无法覆盖整个场区, 无法满足实际使用需求。

(2) 操作使用非常不便。在进行保障指挥调度过程中, 指挥员面前有时需要同时安装固定电话系统、集群系统手持机、调度单机等多个终端,指挥员需要牢记各个终端与对应者的关系,一个口令有时需要通过不同设备重复下达,操作过程繁琐, 效率低下,而且容易出错。

基于上述困难,急需实现指挥调度、固定电话、集群通信等几个语音业务系统之间的互联互通,达到 单机指挥,一呼百应 的快捷效果。

2 指挥通信语音业务多系统融合系统的技术改进

2.1 原音频融合设备情况介绍

本文的研究基于BY-AVSP-TS004-1 型音频融合调度设备(下文简称 音频融合设备 )。该音频融合设备主要由通用控制器机框和各种板卡组成。通用控制器机框是各个板卡的容器,主要为各个板卡供电,提供各个板卡间的数据交换功能, 并为各个板卡提供相应的外部接口。但该音频融合设备只具备程控电话拨打四线模拟调度、程控电话拨集群手持机 2 个功能, 不具备三方通话功能,无法实现调度单机、集群系统基站、程控交换机的互联互通及混音会议功能。

2.2 设计思路

现有设备不具备三方通话功能的原因是有线指挥调度系统为数字调度系统,仅支持H.323 协议[5],而该融合设备采用SIP 协议,两者无法直接互连互通。实际中使用的无线集群调度系统协议众多,不同融合设备厂家和集群调度系统厂家设定的集群系统协议可能不相同。为解决它们的互连问题,需要克服厂家之间的私有协议保护,通过提取音频信号进行控制和转发。

因此,语音业务多系统融合接入系统的总体设计思路为: 以数字调度系统为核心交换系统,以音频融合设备为基础, 在保持现有各类语音指挥通信系统稳定运行的情况下,对部分系统设备相关接口进行技术改进,采用以单个调度单机为中继的方式,分别通过融合设备实现集群系统、程控系统的互连互通。集群系统、固定电话系统分别与单个调度单机进行音频互连互通,调度单机分别采集各个设备的音频信号,通过自有的网口与调度交换主机相连,最终实现集群系统与程控电话系统、指挥调度系统的互连互通功能,达到 一呼百应 的通信效果,充分拓展现有各语音系统的任务保障能力,提高了指挥效率和原有装备效益。


2.3 接口设计 

集群系统基站具备网口、串口、环路中继、E1 接口、用 户接口和音频输入、PTT 输入接口,本文采用环路接口将集群 系统基站与融合设备相连,首先对融合设备的相关接口进行了 软件修改,采用融合设备使软件第一步拨打融合设备内部号 码,第二步拨打电话网号码,第三步拨打集群系统调度台,第 四步拨打集群手持机或车载台号码的方法,实现系统之间的 互连。图 2 所示为集群系统与音频融合设备连接示意图。


该融合设备已具有连接某特定型号的集群系统功能,不 支持单位使用的集群系统(下文简称“UHF”)。考虑到 UHF 集群系统提供的是环路中继,只要有电话线的地方都能与 UHF 集群互通。为方便 UHF 的接入,这里借助固定电话网的 用户线将 UHF 集群接入,同时音频融合设备通过 E1中继接 入固定电话网,最终实现音频融合设备与 UHF 集群的互通。 图 3 所示为 UHF 集群系统通过固定电话网实现和指挥调度系 统互通的示意图。

3 改进的指挥通信语音业务多系统融合具体实现

3.1 信令转换

音频融合系统主要实现指挥调度系统和集群系统、固定电话网系统之间的互联互通。其中,指挥调度系统使用一台调度单机作为中继进行音频互通,音频融合设备通过音频线连接调度单机的音频输入输出端口实现音频互通功能。集群系统通过环路中继的方式与音频融合系统进行互通。固定电

图1 利用一个有线指挥调度终端带入一个其他系统用户示意图

2.3 接口设计

集群系统基站具备网口、串口、环路中继、E1 接口、用户接口和音频输入、PTT 输入接口,本文采用环路接口将集群系统基站与融合设备相连,首先对融合设备的相关接口进行了软件修改,采用融合设备使软件第一步拨打融合设备内部号码,第二步拨打电话网号码,第三步拨打集群系统调度台,第四步拨打集群手持机或车载台号码的方法,实现系统之间的互连。图 2 所示为集群系统与音频融合设备连接示意图。

音频融合系统的信令转换通过音频融合设备的ISG 程序实现。ISG由主控子系统(GCU)、数字中继子系统(DTU)、模拟中继子系统(ATU)、模拟用户子系统(ASU)、无线接入子系统(ECU)、媒体资源管理子系统(MRU)以及时隙连接管理系统(CMU)等组成。

DTU实现数字中继接入功能(包括 7 号信令接入),在音频融合系统中通过DTU 实现和固定电话网的互通。该子系统部署在数字中继板(MGU)上。固定电话网发起呼叫的信令流程如图 4 所示。

ECU 提供无线设备接入功能,包括无线保密调度主机、 保密机、自适应控制器、收信机、发信机等设备。在音频融 合系统中实现和智讯指挥调度系统、无线保密调度集群系统 的互通。ECU 子系统主要实现音频接口、PTT、RS 232 等事

3.2 媒体转换过程 

模拟的语音信号如果要通过 IP 网络传输,则需要先进行 模拟 / 数字转换,然后对编码后的数据进行压缩,最后打包成 RTP 包,通过 IP 网络传送到对端。对端接收到数据后,进行 解 RTP 包、解压缩操作,然后经数字 / 模拟转换后输出。

对于通过 E1 等线路传输的数字音频信号,在通过时隙 交换后传输到音频输出端口时,只需在接收端对其进行数据 / 模拟信号的转换即可。媒体转换的过程如图 7 所示。

4 结 语

综上所述,本文的语音业务多系统融合技术以数字调度 系统为核心,以音频融合设备为基础,通过接口设计、信令转 换设计和媒体转换设计三部分,实现了在保持现有各类语音 指挥通信系统稳定运行的情况下,对部分系统设备相关接口的 技术进行改进,达到了“一呼百应”的指挥效果,减少了指挥 员对终端设备的操作工作量,给了指挥员更多的态势把握和决 策思考时间,使指挥员能够实时了解末端的实际情况,也可以 直接指挥末端,使任务的部署更加灵活,大大提高了模拟的 真实度。