摩登3测速代理_电源布局中,竟然有这些不为人知的通用性规则……


在成功的电源设计中,电源布局是其中最重要的一个环节。但是,在如何做到这一点方面,每个人都有自己的观点和理由。事实是,很多不同的解决方案都是殊途同归;如果设计不是真的一团糟,多数电源都是可以正常工作的。

当然,这其中也有一些通用性规则,例如:

● 不要在快速切换信号中运行敏感信号。换言之,不要在开关节点下运行反馈跟踪。

● 确保功率载荷跟踪和接地层大小足以支持当前的电流。

● 尽量保持至少一个连续的接地层。

● 使用足够的通孔(通常以每个通孔1A开始),将接地层相连。

除了这些基本的布局规则,我通常首先会识别开关回路,然后确定哪些回路具有高频开关电流。图1所示为针对降压电源(原理图和布局)的简化功率级的一个示例。

图1:降压电源原理图和布局

降压电源中存在两种状态(假定连续传导模式):控制开关(Q1)接通时和控制开关断开时。当控制开关接通时,电流从输入流至电感器。当控制开关断开时,电流继续在电感器流动并流经二极管(D1)。电流连续输出。

但是存在输入脉冲电流,这是您在布局中需要关注的部分。在图1中,此回路被标记为“高频回路”,并以蓝色显示。您布局的首要目标是将Q1、D1和输入电容与最短、最低电感回路连接。该回路越小,开关产生的噪声便越低。如果忽略这一点,电源将不能有效工作。

识别开关回路的规程适用于所有的电源拓扑结构。规程的各个步骤分别是:

● 在接通状态确定电流通路。

● 在断开状态确定电流通路。

● 找到连续电流的位置。

● 找到断续电流的位置。

● 尽量减少断续电流环路。

此列表中列出了给定功率级配置的关键回路:

● 降压——输入电容回路。

● 升压——输出电容回路。

● 反相降压 -升压——输入和输出电容回路。

● 反激——输入和输出电容回路。

● Fly-Buck™——输入电容回路。

● SEPIC——输出电容回路。

● Zeta——输入电容回路。

● 正激、半桥、全桥——输入电容循环。



免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!