
作者:melonstreet 整理:cpp开发者
出处:https://www.cnblogs.com/QG-whz/
我们在对 vector 做 push 操作的时候,或者对某个指针做 new 操作的时候,如果没有做异常处理,一旦系统内存不够用了,程序是会被 terminate 掉的。这就要求我们熟悉 C++ 异常,保证日常开发中能正确处理它。本文主要介绍C++ 异常机制的底层原理与实际应用,通俗易懂,快来读一读吧。
以下是正文
C++异常机制概述
异常对象
。
try
块,依次匹配catch语句中的异常对象(只进行类型匹配,catch参数有时在 catch 语句中并不会使用到)。若匹配成功,则执行 catch 块内的异常处理语句,然后接着执行
try…catch…
块之后的代码。如果在当前的 try…catch… 块内找不到
匹配
该异常对象的catch语句,则由更外层的 try…catch… 块来处理该异常;如果当前函数内所有的 try…catch… 块都不能匹配该异常,则递归回退到调用栈的上一层去处理该异常。如果一直退到主函数 main() 都不能处理该异常,则调用系统函数 terminate() 终止程序。
一个最简单的 try…catch… 的例子如下所示。我们有个程序用来记班级学生考试成绩,考试成绩分数的范围在 0-100 之间,不在此范围内视为数据异常:
int main()
{
int score=0;
while (cin >> score)
{
try
{
if (score > 100 || score < 0)
{
throw score;
}
//将分数写入文件或进行其他操作
}
catch (int score)
{
cerr << "你输入的分数数值有问题,请重新输入!";
continue;
}
}
}
throw
是个关键字,与抛出表达式构成了 throw 语句。
其语法为:
throw 表达式;
//示例代码:throw包含在外层函数的try块中
void registerScore(int score)
{
if (score > 100 || score < 0)
throw score; //throw语句被包含在外层main的try语句块中
//将分数写入文件或进行其他操作
}
int main()
{
int score=0;
while (cin >> score)
{
try
{
registerScore(score);
}
catch (int score)
{
cerr << "你输入的分数数值有问题,请重新输入!";
continue;
}
}
}
异常对象放在内存的特殊位置,该位置既不是栈也不是堆,在 window 上是放在线程信息块 TIB 中。
这个构造出来的新对象与本级的 try 所对应的 catch 语句进行
类型匹配
,类型匹配的原则在下面介绍。
异常对象
标准异常类 | 描述 | 头文件 |
---|---|---|
exception | 最通用的异常类,只报告异常的发生而不提供任何额外的信息 | exception |
runtime_error | 只有在运行时才能检测出的错误 | stdexcept |
rang_error | 运行时错误:产生了超出有意义值域范围的结果 | stdexcept |
overflow_error | 运行时错误:计算上溢 | stdexcept |
underflow_error | 运行时错误:计算下溢 | stdexcept |
logic_error | 程序逻辑错误 | stdexcept |
domain_error | 逻辑错误:参数对应的结果值不存在 | stdexcept |
invalid_argument | 逻辑错误:无效参数 | stdexcept |
length_error | 逻辑错误:试图创建一个超出该类型最大长度的对象 | stdexcept |
out_of_range | 逻辑错误:使用一个超出有效范围的值 | stdexcept |
bad_alloc | 内存动态分配错误 | new |
bad_cast | dynamic_cast类型转换出错 | type_info |
catch 关键字
-
允许从非常量到常量的类型转换。
-
允许派生类到基类的类型转换。
-
数组被转换成指向数组(元素)类型的指针。
-
函数被转换成指向函数类型的指针。
catch(type x)
{
//做了一部分处理
throw;
}
若catch参数对象是非引用类型,则重新抛出的异常对象并没有受到修改。
栈展开、RAII
//一个没有任何意义的类
class A
{
public:
A() :a(0){ cout << "A默认构造函数" << endl; }
A(const A& rsh){ cout << "A复制构造函数" << endl; }
~A(){ cout << "A析构函数" << endl; }
private:
int a;
};
int main()
{
try
{
A a ;
throw a;
}
catch (A a)
{
;
}
return 0;
}
程序将输出:
int main()
{
try
{
A * a= new A;
throw *a;
}
catch (A a)
{
;
}
getchar();
return 0;
}
程序运行结果:
RAII机制有助于解决这个问题,RAII(Resource acquisition is initialization,资源获取即初始化)。它的思想是以对象管理资源。为了更为方便、鲁棒地释放已获取的资源,避免资源死锁,一个办法是把资源数据用对象封装起来。程序发生异常,执行栈展开时,封装了资源的对象会被自动调用其析构函数以释放资源。C++ 中的智能指针便符合RAII。关于这个问题详细可以看《Effective C++》条款13.
C++ 类构造函数初始化列表的异常机制,称为 function-try block。一般形式为:
myClass::myClass(type1 pa1)
try: _myClass_val (初始化值)
{
/*构造函数的函数体 */
}
catch ( exception& err )
{
/* 构造函数的异常处理部分 */
};
-
若析构函数抛出异常,调用 std::abort() 来终止程序。
-
在析构函数中 catch 捕获异常并作处理。
noexcept修饰符与noexcept操作符
void func() throw(int ,double ) {...}
void func() throw(){...}
这是 throw 作为函数异常说明,前者表示 func()这个函数可能会抛出 int 或 double 类型的异常,后者表示 func() 函数不会抛出异常。事实上前者很少被使用,在 C++11 这种做法已经被摒弃,而后者则被 C++11 的 noexcept 异常声明所代替:
void func() noexcept {...}
//等价于void func() throw(){...}
在函数运行时若抛出了异常,编译器可以选择直接调用 terminate() 函数来终结程序的运行,因此,noexcept 的一个作用是
阻止异常的传播,提高安全性
.
void func() noexcept(常量表达式);
免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!