摩登3注册网址_技术讲座:用氧化镓能制造出比SiC性价比更高的功率元件(一)

  与SiC和GaN相比,β-Ga2O3有望以低成本制造出高耐压且低损失的功率半导体元件,因而引起了极大关注。契机源于日本信息通信研究机构等的研究小组开发出的β-Ga2O3晶体管。下面请这些研究小组的技术人员,以论文形式介绍一下β-Ga2O3的特点、研发成果以及今后的发展。

  我们一直在致力于利用氧化镓(Ga2O3)的功率半导体元件(以下简称功率元件)的研发。Ga2O3与作为新一代功率半导体材料推进开发的SiC和GaN相比,有望以低成本制造出高耐压且低损失的功率元件。其原因在于材料特性出色,比如带隙比SiC及GaN大,而且还可利用能够高品质且低成本制造单结晶的“溶液生长法”。

用氧化镓制造功率元件,比SiC成本低,且性能出色

  在我们瞄准的功率元件应用中,使用Ga2O3试制了“MESFET”(metal-semiconductorfield effect transistor,金属半导体场效应晶体管)。尽管是未形成保护膜(钝化膜)的非常简单的构造,但试制品显示出了耐压高、泄漏电流小的特性。而使用SiC及GaN来制造相同构造的元件时,要想实现像试制品这样的特性,则是非常难的。

  虽然研发尚处于初期阶段,但我们认为Ga2O3的潜力巨大。本论文将介绍Ga2O3在功率元件用途方面的使用价值、研发成果,以及今后的目标等。

  比SiC及GaN更为出色的性能

  Ga2O3是金属镓的氧化物,同时也是一种半导体化合物。其结晶形态截至目前(2012年2月)已确认有α、β、γ、δ、ε五种,其中,β结构最稳定。与Ga2O3的结晶生长及物性相关的研究报告大部分都使用β结构。我们也使用β结构展开了研发。

  β-Ga2O3具备名为“β-gallia”的单结晶构造。β-Ga2O3的带隙很大,达到4.8~4.9eV,这一数值为Si的4倍多,而且也超过了SiC的3.3eV 及GaN的3.4eV(表1)。一般情况下,带隙大的话,击穿电场强度也会很大(图1)。β-Ga2O3的击穿电场强度估计为8MV/cm左右,达到Si的20多倍,相当于SiC及GaN的2倍以上。

  

  物性比较

       

  图1:击穿电场强度大

  带隙越大,击穿电场强度就越大。β-Ga2O3的击穿电场强度为推测值。

  β-Ga2O3在显示出出色的物性参数的同时,也有一些不如SiC及GaN的方面,这就是迁移率和导热率低,以及难以制造p型半导体。不过,我们认为这些方面对功率元件的特性不会有太大的影响。

  之所以说迁移率低不会有太大问题,是因为功率元件的性能很大程度上取决于击穿电场强度。就β-Ga2O3而言,作为低损失性指标的“巴利加优值(Baliga’s figure of merit)”与击穿电场强度的3次方成正比、与迁移率的1次方成正比。因此,巴加利优值较大,是SiC的约10倍、GaN的约4倍。