分类目录:摩登3平台开户

摩登3测速代理_正确选择PLC的八大要素

可编程控制器(programmable logical controller,简称PLC)已经越来越多地应用于工业控制系统中,并且在自动控制系统中起着非常重要的作用。所以,对PLC的正确选择是非常重要的。 面对众多生产厂家的各种类型PLC,它们各有优缺点,能够满足用户的各种需求,但在形态、组成、功能、网络、编程等方面各不相容,没有一个统一的标准,无法进行横向比较。下面提出在自动控制系统设计中对PLC选型的一些看法,可以在挑选PLC时作为参考。可以通过以下几方面的比较,挑选到适合的产品。 一、工作量 这一点尤为重要。在自动控制系统设计之初,就应该对控制点数(数字量及模拟量)有一个准确的统计,这往往是选择PLC的首要条件,一般选择比控制点数多10%~30%的PLC。这有几方面的考虑: 1、可以弥补设计过程中遗漏的点; 2、能够保证在运行过程中个别点有故障时,可以有替代点; 3、将来增加点数的需要。 二、工作环境 工作环境是PLC工作的硬性指标。自控系统将人们从繁忙的工作和恶劣的环境中解脱出来,就要求自控系统能够适应复杂的环境,诸如温度、湿度、噪音、信号屏蔽、工作电压等,各款PLC不尽相同。一定要选择适应实际工作环境的产品。 三、通信网络 现在PLC已不是简单的现场控制,PLC远端通信已成为控制系统必须解决的问题,但各厂家制定的通信协议千差万别,兼容性差。在这一点上主要考虑以下方面: 1、同一厂家产品间的通信。各厂家都有自己的通信协议,并且不止一种。这在大、中型机上表现明显,而在小、微型机上不尽相同,一些厂家出于容量、价格、功能等方面考虑,往往没有或者有与其它协议不同,而且比较简单的通信。所以,在这方面主要考虑的是同一厂家不同类型PLC之间的通信; 2、不同厂家产品间的通信。若所进行的自动控制系统设计属于对已有的自控系统进行部分改造控制工程网版权所有,而所选择的是与原系统不同的PLC,或者设计中需要2个或2个以上的PLC,而选用了不同厂家的产品,这就需考虑不同厂家产品之间的通信问题; 3、是否有利于将来。由于各厂家制定的通信协议各不相同,国际上也无统一标准,所以在PLC选型上受到很大限制。就要考虑影响面大、有发展的、功能完备、接近通用的通信协议。 四、编程 程序是整个自动控制系统的“心脏”,程序编制的好坏直接影响到整个自动控制系统的运作。编程器及编程软件有些厂家要求额外购买,并且价格不菲,这一点也需考虑在内。 1、编程方法 一种是使用厂家提供的专用编程器。也分各种规格型号,大型编程器功能完备控制工程网版权所有,适合各型号PLC,价格高;小型编程器结构小巧,便于携带,价格低,但功能简单,适用性差;另一种是使用依托个人电脑应用平台的编程软件,现已被大多数生产厂家采用。各生产厂家由于各自的产品不同,往往只研制出适合于自己产品的编程软件,而编程软件的风格、界面、应用平台、灵活性、适应性、易于编程等都只有在用户亲自操作之后才能给予评价。 2、编程语言 编程语言最为复杂,多种多样,看似相同,但不通用。最常用的可以划分为以下5类编程语言: (1)梯形图 这是PLC厂家采用最多的编程语言,最初是由继电器控制图演变过来的,比较简单,对离散控制和互锁逻辑最为有用; (2)顺序功能图 它提供了总的结构,并与状态定位处理或机器控制应用相互协调; (3)功能块图 它提供了一个有效的开发环境,并且特别适用于过程控制应用; (4)结构化文本 这是一种类似用于计算机的编程语言,它适用于对复杂算法及数据处理; 上一页 1 2 下一页

摩登三1960_USB数据采集控制器在工业控制中的应用

1. USB数据采集控制器简介 LabJack U12是一个多功能USB数据采集控制器,它在同类产品中性价比最高。具有8个模拟输入通道,2个模拟输出通道和20个可编程数字输入输出通道。它已被广泛地应用于实验/试验设备、自动测试设备、及其它PC-Based系统中。是一个理想的OEM部件。 它还越来越多地应用于工业过程控制中。由它组成的PC-Based系统有所有PC-Based系统所固有的优点,如系统开发周期短,系统变更容易,用户界面漂亮、易操作,可以进行过程监视、报警、记录、打印,可以利用计算机的计算能力实现各种PLC无法实现的控制算法来进行复杂的过程控制,以及其他等等优点。结合本公司为其配置了其它各种外围设备和组态软件,系统开发更为简单、快速,其应用场合更加广泛。 本文将介绍以LabJack U12组成的控制系统以及所需要注意的方面,在其基础上介绍如何扩展系统的规模和需要的模块,然后着重介绍如何使用冗余技术来提高系统的运行可靠性。 2. 系统的组成 2.1 单个LabJack U12系统 一些简单的控制系统只需要一个LabJack U12。其系统组成如图1所示。其中U12由计算机通过USB供电,所有的输入输出口都可以在U12本身和CB25板上接入和接出。这样的系统十分简单,被大多数OEM设备所采用。 图1 单个LabJack U12 系统 2.2 系统扩展 对于大多数工控系统来说,单个LabJack U12的输入输出口是不够的,因此系统需要进行扩展。使用USB集线器可以十分方便地把整个系统扩展到一个很庞大的系统。一台计算机可以连接多达80台LabJack U12,USB的集线器可以一层层地级联。系统的扩展拓扑图如图2所示。如果所使用的USB集线器是1出4的,扩展后的系统就可以连接16个LabJack U12。如果是1出8的集线器,那么扩展后的系统会有64个LabJack U12。 图2 系统扩展拓扑图 2.3 数字口的驱动模块 在工控系统中,数字输出常常用来控制继电器或中间继电器,而中间继电器再控制接触器以控制电气设备。LabJack U12 的数字口输出驱动能力有限,只能驱动TTL门电路或LED,无法直接驱动继电器线圈;而且其输出的电平是5V 和工控上常用的24V 不兼容。因此数字输出需要接到一个驱动模块OD25。 OD25 和LabJack U12的连接主要是通过一根DB25线。它为LabJack U12 所有的数字口提供了驱动,驱动电压可达50V,驱动电流可达500毫安,可同时直接驱动多个继电器(如果有必要的话)。因此OD25 在工控系统中一般是必不可少的。 OD25 还提供了其它模块和LabJack U12的连接。一般来说它的另一个DB25 插座连接到CB25或OI25,作为数字输入的接线板。当数字输入为高时,OD25上的相应数字位的LED 会点亮,该LED 显示在系统调试和程序调试中十分有用。使用OD25的系统如图3 所示。 图3 使用数字驱动模块的系统简图 2.4 CB25 和OI25 模块 CB25 只是一个接线板,提供了D0-D15的数字口的接线柱,数字口的输入输出方向是由软件决定的,因此如果数字输入口不需要隔离的话,用CB25 即可。 OI25 是数字输入口光电隔离模块。光电隔离的应用情况比较复杂,采用怎样的隔离完全取决于信号的来源(如是否有被雷击的危险,是否来自不同的电系统)、信号的性质(交流或直流),以及系统在这方面的要求。而且必须指出的是如果采用隔离,必须对整个系统进行考虑,而不该仅仅考虑数字口的隔离,如485 通讯口是否有隔离,模拟信号是否有隔离等等。在这方面常常存在一些误区,但在这里我们就不做详细说明了。下面我们仅介绍不需要隔离的系统应用,但这并不说明LabJack 组成的系统在隔离方面有任何问题或不方便之处。其实和其他任何系统都一样,需要隔离的系统要增加隔离模块,系统的成本会随之大幅增加。 上一页 1 2 下一页

摩登3注册网址_ARM系列微处理器简介之: ARM系列处理器的应用领域

1.4ARM系列处理器的应用领域 本文引用地址:http://www.eepw.com.cn/article/257094.htm 1.4.1ARM7系列 ARM7系列处理器主要应用于下面一些场合: ·个人音频设备(MP3播放器、WMA播放器、AAC播放器); ·接入级的无线设备; ·喷墨打印机; ·数码照相机; ·PDA。 1.4.2ARM9系列 ARM9系列处理器具体应用于下面一些场合: ·下一代无线设备,包括视频电话和PDA等; ·数字消费品,包括机顶盒、家庭网关、MP3播放器和MPEG4播放器; ·成像设备,包括打印机、数码照相机和数码摄像机; ·汽车、通信和信息系统。 1.4.3ARM9E系列 ARM9E系列处理器具体应用于下面一些场合: ·下一代无线设备,包括视频电话和PDA等; ·数字消费品,包括机顶盒、家庭网关、MP3播放器和MPEG4播放器; ·成像设备,包括打印机、数码照相机和数码摄像机; ·存储设备,包括DVD或HDD等; ·工业控制,包括电机控制等; ·汽车、通信和信息系统的ABS和车体控制; ·网络设备,包括VoIP、WirelessLAN和xDSL等。 1.4.4ARM10E系列 ARM10E系列处理器具体应用于下面一些场合: ·下一代无线设备,包括视频电话和PDA、笔记本电脑和互联网设备; ·数字消费品,包括机顶盒、家庭网关、MP3播放器和MPEG4播放器; ·成像设备,包括打印机、数码照相机和数码摄像机; ·汽车、通信和信息系统等; ·工业控制,包括马达控制等。 1.4.5SecureCore系列 SecureCore系列处理器主要应用于一些安全产品及应用系统,包括电子商务、电子银行业务、网络、移动媒体和认证系统等。

摩登3注册网址_基于凌华科技PCI-9846 的航空导航VOR信号综测仪设计

•应用领域 航空导航设备测试应用,信号产生与采集。•挑战 航空电子设备的测试要求利用有限的资源,构建功能多样化的自动测试系统。机载电子设备的信号多且复杂,涵盖了低频和高频信号、连续和离散信号,同时还包括一些非电信号。传统的测试系统采用分立仪器搭建,这种方法成本高,测量自动化程度低,扩展性差。随着民用航空运输业的发展,大部分机载飞行电子设备高度数字化、集成化,已不可能靠人工手动对其进行测试检查,传统的仪器也难以满足需求。与之相比,基于软件无线电的信号处理机制由于它所具有的灵活性、开放性等特点,有着突出的优势,更加适应需要。同时,这也将为相关的教学研究提供便利。•解决方案 以航空导航VOR信号为例。研究VOR导航原理,对其合成信号进行分析和建模。波形的时域数据可以方便地用公示表达和计算,得到的数据输入到DAC,即可生成模拟波形,再经过上变频达到所需频率。对于已有的模拟信号,调用PCI-9846高速数字化仪进行采集,采集的数据可以实时显示,也可以存储为文件方便日后调用和分析。经验证,软件无线电在自动测试系统的应用可以大大节约成本,简化系统,并提高效率。数字化仪的性能指标可以满足需要。 基于凌华科技PCI-9846 的航空导航VOR信号综测仪设计 摘要:以航空导航VOR(Very High Frequency Omnidirectional Range,甚高频全向信标)信号为例,用凌华科技PCI-9846高速数字化仪进行采集,并完成时域及频域的分析,解调后可以还原出方位信息,以此快捷地检验信号准确性。经验证,软件无线电在自动测试系统的应用可以大大节约成本,简化系统,并提高效率。数字化仪的相关性能指标可以满足需要。 引言:航空电子设备的测试要求利用有限的资源,构建功能多样化的自动测试系统。机载电子设备的信号多且复杂,涵盖了低频和高频信号、连续和离散信号,同时还包括一些非电信号。传统的测试系统采用分立仪器搭建,这种方法成本高,测量自动化程度低,扩展性差。随着民用航空运输业的发展,大部分机载飞行电子设备高度数字化、集成化,已不可能靠人工手动对其进行测试检查。所以目前世界各发达国家均采用自动测试设备完成此类工作。[1][2] 软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电台的各种功能,从基于硬件、面向用途的电台设计方法中解放出来[3]。自动测试系统对信号源的灵活性和全面性提出了更高的要求,传统的信号发生器难以满足需求[4]。与之相比,基于软件无线电的信号发生器由于它所具有的灵活性、开放性等特点,有着突出的优势,更加适应需要。同时,这也将为相关的教学研究提供便利。 将凌华科技PCI-9846H运用于自动测试系统信号源的测试和校准中,以航空导航VOR信号为例,对信号进行采集和处理,还原出基本信息。证明数字化仪的性能指标可以满足需要。 1.VOR信号 甚高频全向信标的基本功用是为机载VOR接收机提供一个复杂的无线电信号,经机载VOR接收机解调后,测出地面甚高频全向信标台相对于飞机的磁方位即VOR方位[5]。机载接收机接收到的空间合成VOR信号包括基准相位信号和可变相位信号,通过对两种信号相位的比较来实现定向。VOR工作频率范围108MHz~117.95MHz,波道间隔0.05MHz。 1.1 VOR基准相位信号 VOR基准相位信号(Reference Phase Signal)包括射频载波和9960Hz的副载波。射频载波的频率范围从108MHz~117.95MHz。9960Hz的副载波被30Hz基准信号调频,调制系数16,表达式为: 式中是副载波对射频载波的调幅系数,为副载波频率,为对副载波的调制系数,为基带信号频率,为射频频率。 基准相位信号在空间0°~360°各径向方位上辐射信号的强度和所含30Hz信号的相位都不变,辐射场的水平方向性图为一个圆。 1.2 VOR可变相位信号 可变相位信号(Variable Phase Signal)只包含单纯的射频载波,频率范围108MHz~117.95MHz。两对正交的边带天线分别辐射正弦调制边带波和余弦调制边带波,场强均按30Hz的规律变化,这样在空间就生成了一个30Hz正弦规律改变的调幅波,表达式为: (2) 式中是当前VOR径向方位角。 1.3 合成信号 空间接收到的合成信号(Composite Signal)包括基准相位信号和可变相位信号的叠加,如图1所示,表达式为: (3) 接收机通过解调和比较二者的相位差得到方向信息。[5,6] 图1空间合成信号 2.系统实现 采用以GPP(General-Purpose Processor,通用处理器)为基础的体系结构,直接用工控机进行数字信号处理。对于这种无线电系统,从实体上无法观察到一个真正的电台,它完全从软件角度解决无线电通信问题。由于通用机不是一个实时的同步系统,不适于严格定时采样信号的实时处理,只能通过中断来保持一定的同步。但是因其开放性、灵活性、可编程性和人机界面方面的优势,最接近理想的软件无线电,也更适于测试、教学和研究。 系统选用流水线形式进行连接,与信号流方向一致,具有很高的效率,时延短,处理数率高,可以一定程度上弥补GPP信号处理速度慢的不足。但是由于各模块之间采用实际电路互联,模块间耦合紧密,独立程度不高。如果系统功能改变,需要增加、去除或修改某一模块,牵扯到相应的模块变动,甚至总体结构的改变。因为设计目的是针对测试系统信号源的测试和校准,信号相对固定,不需要频繁变动,所以选用流水式结构,结构框图如图2所示[7]。信号的产生和处理由工控机完成,任意波形发生模块(Arbitrary Waveform Generator,AWG)实现波形输出(高频时需要用到数字上变频卡),如果做无线发射和接收时需要附加天线和射频放大器。信号的采集和数模转换由凌华科技PCI-9846高速数字化仪完成,转换结果可以实时显示,也可以保存成波形文件以便后续处理。 图2 系统框图 2.1 信号源 中频信号用PXI-5421产生。这是一款可进行板载信号处理(OSP)的任意波形发生器,具有16位分辨率和-91 dBc封闭式无寄生动态范围(SFDR),可为要求数字上变频和基带插值的应用提供仪器质量标准。作为一款功能齐全的AWG,PXI-5421还能够生成通用的电子测试信号,其最大输出范围为12Vpp,50Ω电阻载荷,最高频率43MHz[8]。上变频卡采用NI PXI-5610,其内有2.7 GHz上变频器,具有高实时带宽和稳定的时基,其精度可达±50ppb。在射频生成应用中,与模块化函数发生器紧密集成,可产生频率范围50kHz到2.7GHz的信号,可调增益范围130dB[9]。PXI-5421产生高频VOR信号送至PXI-5610做上变频处理,变频到需要的甚高频波段。 PXI板卡安装在NI PXI-1402控制箱内。采用NI PXI-PCI833x 套件,可使用通过铜缆连接的完全透明的MXI-4网络在计算机上控制PXI模块。MXI-4通过在PCI-PCI高带宽连接上搭建桥路,通过计算机的PCI接口对PXI系统进行远程控制。 2.2 数据采集 用凌华科技PCI-9846高速数字化仪完成数据采集。凌华科技PCI-9846是具有40MHz采样频率的16位4通道数字化仪,专为高频率、大动态范围信号设计,最高输入频率可达20MHz。模拟输入量程可以通过软件设定为±1V或±0.2V,可选择50欧输入阻抗,以适应高速、高频信号。装有4通道高线性16位A/D转换器,可以理想地适应诸如雷达、超声波及软件无线电等大动态范围信号。 配合高达512MB的板载内存,PCI-9846可以记录更长时间的波形而不受限于PCI总线的传输速率。数字化的信号数据在传输到主存储器以前先被存储到板载内存。数据传输采用SG-DMA(Scatter-gather Direct Memory Access,分散-聚集直接内存读取)方式,可以提供更高的数据传输率,并可更有效的利用系统内存。如果数字化仪的数据传输速率低于可用的PCI总线带宽,PCI-9846还设有一个板载取样点先进先出存储器,以实现绕过板载内存而实时直接将数据传输到主机内存。 PCI-9846具有灵活的触发选项,包括软件触发、外部数字触发、任意模拟通道的模拟触发以及PXI总线触发。多样的触发方式使其更适应需求。后触发、延迟触发、前触发及中触发模式可以采集触发事件附近的数据。PCI-9846也可以重复触发采集,以便对极短时间间隔的多个数据段进行采集。PXI背板提供的多种触发选项使PCI-9846可以简便地实现多模块同步。利用PXI触发总线,PCI-9846可以在设置为“主”时向PXI触发总线输出触发或时基信号,在设置为“从”时从PXI触发控制槽接收触发或时基信号。PXI背板提供精准的10MHz信号也可以用作一个时基信号源。 PCI-9846包含一个精确的低温度漂移板载基准。这不但可以提供一个稳定的校准源,亦能保证在较大温度变化范围的数据采集稳定性。自动校准过程通过软件完成,不需要任何手动调整。一旦校准过程完成,校准信息将被存储在板载EEPROM (Electrically Erasable Programmable Read-Only Memory,电可擦除可编程只读存储器),需要时校准值可从板上加载。[10] 上一页 1 2 下一页

摩登3注册平台官网_适用于工业控制应用的隔离PLC数字输入

数字/二进制传感器和开关对信号监测和系统控制至关重要,广泛用于工业控制、工业自动化、电机控制和过程自动化。所有传感器的输出都需要被中央处理单元检测和监测。为实现这一目的,通常利用可编程逻辑控制器(PLC)数字输入模块中的两个高功率电阻分压器检测传感器输出电压。为隔离每路传感器通道,需要使用独立的光耦。根据复杂度的不同,一个系统常常要使用多个光耦(图1)。 图1:传统工业传感器监测系统原理图,其中电阻分压器和光耦用于监测和检测传感器输出至系统PLC的信号。 在这种传统架构中,电阻分压器消耗的功率较大,形成电路板(PCB)“热点”,要求设计支持高温工作以及增加散热器。热点甚至会降低系统可靠性。此外,对于高通道数量的模块,多光耦设计增加系统成本和功耗,浪费宝贵的电路板空间。显而易见,紧凑而简单的隔离数字输入接口将有利于工业生产。 简化PLC的数字输入 集成能够满足这一要求。说出来容易做出来难!首先,增加通道输入,扩展系统容量,但仍使接口保持简单。现在,转而考虑数字串行化,并寻求省去隔离用光耦的途径。使用可配置的限流以降低功耗(见图4)。改善检错功能,使同一简单接口上的数据传输非常可靠。集成以上这些特性,使数字输入功能更加完善而可靠,产生的热量更少、功耗更低,节省空间,并且成本大幅降低,这就是目标。 隔离数字输入接口设计的实现 以上设计目标的解决方案就是Corona隔离子系统参考设计,该设计使用了数字输入转换器/串行器和数字隔离器。Corona设计提供PLC数字输入模块的前端接口电路,支持高压输入(最高36V),电源和数据隔离——全部集成在90mm×20mm小尺寸封装中。该设计集成八通道数字输入电平转换器/串行器、六通道数据隔离器和用于隔离电源设计(如果现场无电源)的H桥变压器驱动器。我们进一步讨论该设计的硬件和软件。 硬件说明 Corona输入模块如图2所示,系统框图见图3。 图2:Corona参考设计电路板(MAXREFDES12#)。 图3:数字输入子系统参考设计框图。 隔离器相关文章:隔离器原理 上一页 1 2 下一页

摩登3登录_24V总线工业应用中线性稳压器与开关式稳压器比较

作者:德州仪器 (TI) 电源管理组产品营销经理Rich Nowakowski和应用工程师兼技术员组成员Robert Taylor 图1 集成MOSFET的开关式(降压)转换器图2 集成、宽输入电压线性稳压器 线性稳压器已存在了许多年。一些设计人员仍然把已存在了20多年之久的线性稳压器用于众多新老项目。另一些设计人员则通过离散组件制作出属于自己的线性稳压器。在进行宽范围电压转换时,线性稳压器的简单性是一个难以超越的优势。但是,如果压降过大,则24V总线的低电流应用(例如:工业应用或者HVAC控制等)可能会遇到热问题。幸运的是,设计人员现在有许多选择,可以使用小型、高效、宽输入电压开关式稳压器。 本文将对24V总线、100mA和5V输出的三种不同解决方案进行比较。我们把一个同步降压转换器与一个集成线性稳压器和一个离散线性稳压器进行对比。通过比较它们的尺寸、效率、散热性能、瞬态响应、噪声、复杂度和成本,帮助广大设计人员选择最能满足某个特殊应用要求的解决方案。 比较条件大多数工业应用都使用24V总线,并要求5V电压来驱动各种负载,例如:逻辑和低电流微处理器等。我们选择100mA的输出电流,原因是它可适应许多逻辑和处理器负载。但是,功耗水平会影响我们使用开关式稳压器还是线性稳压器的决定。图1、2和3所示电路均建立在相同电路板基础上,并使用相同额定值的1µF输入和4.7µF输出陶瓷电容器。 图1所示设计使用一个具有集成MOSFET的同步降压转换器,即德州仪器的TPS54061。注意,该电路并不要求使用一个保护二极管,但却包含了1个电感、5个电容器和4个电阻器。该器件还使用了外部补偿,并使用与图2和图3所示线性电路一样的输入和输出电容器。 图2所示设计使用了一个集成、宽输入电压线性稳压器,即德州仪器的LM317,它是一种具有1.5A输出能力的流行工业标准稳压器。该电路使用2个外部电阻器和2个外部电容器。输入和输出电压的巨大差异,要求双decawatt封装(DDPak)的低热电阻。 图3显示的是一个离散线性稳压器,它使用一个晶体管和一个齐纳二极管,并有2个外部电容器和4个外部电阻器。5.6V下时,齐纳二极管损坏,该电压被馈给NPN晶体管的基极。由于存在基极-发射极压降,输出被调节至~5 V。外部电阻器用于帮助降低NPN晶体管的功耗。 表1概括了这类设计的板面积和组件数目。线性稳压器解决方案要求使用更多的板面积来缓解电路板上的热问题。全负载下时,所有线性稳压器解决方案的功耗都必须达到约2W。一般而言,1平方英寸板面积内,1W左右的功耗会带来100°C的温升。按照设计,线性稳压器解决方案仅允许40°C的温升。如果不考虑外部组件的数目以及补偿反馈环路和选择电感的大量设计工作,在板面积有限时,同步降压转换器无疑是理想选择。 散热性能图4所示热图像表明了这类电路板设计的温升情况。这样设计电路板的目的是,让所有电路均不会干扰相邻电路的散热性能。表2表明,开关式稳压器具有低温升,其温度为11°C。输入和输出电压之间存在巨大差异时,相比线性电路,同步整流开关式稳压器的效率表现优异。(参见表3)有趣的是,我们注意到,集成线性电路的温升不同于离散线性电路。由于集成线性稳压器的封装(DDPak)更大,因此它的散热所分布面积也更大。使用SOT-23和SOT223封装的离散线性电路比DDPak小,并拥有更高的封装功耗额定值,从而让散热更加困难。 图3 离散线性稳压器 表1 板面积和组件数目概括表表2 散热性能总结表 图4 每种电路的发热情况(白色表示最高温度) 表3 效率和功率损耗总结表图5 效率与负载电流的关系曲线图 图6 功耗与负载电流的关系曲线图 效率比较散热性能直接与每种稳压器的效率有关。图5显示了所有三种电路的效率比较情况。正如我们所预测的那样,在轻负载和全负载效率两方面,开关式稳压器均表现优异。在轻负载下,开关损耗和静态电流损耗更加明显,其解释了更轻负载下效率较低的原因。轻负载下时,最好是查看功耗曲线图(图6),而非效率曲线图,因为10mA下50%的效率差异看似为一个较大的余量。但是,负载消耗的电流较小。当输入电压为24V而输出电流为10mA时,开关式稳压器的功耗为2.8mW,集成线性稳压器的功耗则为345mW。在全负载条件下,开关式稳压器的测得功耗为0.093 W,而线性稳压器则为2.06W,其表明余量较宽并且性能获得明显改善。 表3总结了所有三个电路的效率和功耗。注意,离散线性电路的静态电流小于集成线性电路。相比离散线性电路,集成线性稳压器内部电路的功耗更高,并拥有更多的功能。 输出电压特性模拟电路对电压纹波敏感,而数字处理器则对内核电压的精度敏感。应查看电源的电压纹波、电压调节精度以及负载瞬态期间的电压峰值偏差,这一点很重要。线性稳压器本身的纹波较低,可用于消除开关式稳压器的噪声。在最大负载条件下,集成和离散线性稳压器电路的电压纹波均小于10mV。以输出电压百分比表示时,精度应大于0.2%。另一方面,开关式稳压器的电压纹波为75mV,即输出电压的1.5%。开关式稳压器的陶瓷输出电容器的低等效串联电阻特点,使这种电路的纹波较低,但存在开关式稳压器的固有噪声。 比较空载到全负载时开关式稳压器和线性稳压器的输出电压精度表明,开关式稳压器拥有更高的性能。进一步查看产品规格表,我们可知道,开关式稳压器的基准电压是三种电路中精度最高的。开关式稳压器是一种相对较新的集成电路,并且DC/DC转换器正朝着更高的基准电压精度发展。离散线性电路使用一种更加简单的方法来调节输出电压,其性能最低。在许多情况下,由于调节后输出电压为5V,许多应用不需要高电压精度。 图7到图9显示了负载瞬态曲线图。尽管开关式稳压器拥有高输出电压精度,但其在负载瞬态期间测得的峰值到峰值电压并没有线性电路好。50mA到100mA负载步进期间,开关式稳压器的测得峰值到峰值电压为250mV,即输出电压的5%,而线性电路则为40mV。我们可以为开关式稳压器添加更多输出电容,以降低电压峰值,但是代价是成本和尺寸的增加。注意,离散线性电路的设计目的并非是恢复负载瞬态期间的输出电压。另外,简单电路无法实现限流或者热关断保护功能! 图7 负载瞬态期间的开关式稳压器 图8 负载瞬态期间的集成线性稳压器 图9 负载瞬态期间的离散线性稳压器 表4总结了三种稳压器设计的输出电压特性。 表4 输出电压特性总结表 成本比较这些电路中使用的大多数外部组件均为小型、无源电阻器和电容器,成本不超过0.01美元。三个电路中成本最高的组件是硅。所有三个材料清单(BOM)的费用(如表5所示),均收集自10000颗批发建议销售定价的美国销售渠道。正如我们所看到的那样,线性稳压器解决方案的成本远低于开关式稳压器。不幸的是,开关式稳压器要求使用一个外部电感,其费用约为0.10美元,但它所带来的效率提高和尺寸缩减值得我们为此多给钱。集成和离散线性稳压器的成本差异仅为0.06美元!单是保护功能就能证明集成线性稳压器相比离散线性稳压器的优势所在。 表5 BOM成本总结表 结论有许多电源管理解决方案可供设计人员选择,但需根据具体应用需求来选择最佳的解决方案。那些能够降低能耗和节省板空间的电源管理解决方案,使设计人员让其产品具备更加差异化的特性,并在市场上表现出对用户的吸引力。相比线性电路,同步降压转换器的效率更高,板空间更节省。如果某个设计必须实现最低的成本,则可使用离散线性电路,但其性能最低,并且还存在许多潜在问题,例如:散热和缺少保护功能等。 表6总结了所有三种稳压器设计的特性,帮助设计人员为某种具体应用选择最佳解决方案。 表6 24V输入5V/100mA稳压器特性

摩登3娱乐登录地址_凌华科技PCI-9846高速数字化仪在谐波检测中的应用

凌华科技PCI-9846高速数字化仪作为数据采集工具,通过对谐波、间谐波和高频谐波的实验分析,验证谐波函数和采用PCI-9846作为分析采集工具的可行性和正确性。同时,PCI-9846高达20MHz宽动态范围输入信号处理能力,在处理电力系统的高频谐波中也得到了充分发挥。 1、应用背景 1.1电力系统谐波及划分 谐波干扰一般由非线性电压或电流特性的设备产生。电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意,当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。目前,电力系统的谐波电压源和电流源可以分为以下三类设备:①磁芯设备,如变压器、电动机、发电机等;②电弧炉、弧焊机、高压放电管等;③电子设备和电力电子设备。 在实际的电网系统中,由于有非线性负荷的存在,当电流流过与所加电压不呈线性关系的负荷时,就形成非正弦电流。这种非正弦周期性波形可傅立叶级数分解为一个基频正弦波加上许多谐波频率的正弦波,谐波频率是基频的整倍数。电网中有时也存在间谐波、次谐波和高频谐波。谐波实际上是一种干扰量,使电网受到“污染”。 在电磁兼容EMC中(ElectroMagneticCompatibility)定义低频范围(0~9kHz)。谐波、间谐波、次谐波以及高频谐波划分如下表。 表1谐波与频率范围 1.2谐波危害 谐波的危害,是全面的、深层次的,比如: 1)谐波对电网中变压器、电容器组、线路和旋转电机的危害,主要是引起设备故障、附加损耗、发热以及降低设备的使用寿命。 2)谐波会造成保护系统和控制电路的误动作。谐波在电网中引起的谐振,会造成谐波电压升高,谐波电流增大,造成设备损坏和引起继电保护和控制电路的误动。如谐波在负序(基波)量的基础上产生的干扰,会影响各种以负序滤过器为启动元件的保护及自动装置系统。 3)谐波会造成测控仪表的不精确,不仅影响计量的准确性,而且对控制系统产生严重干扰。 4)谐波超过一定程度,不仅影响电子设备的正常工作,还会对其造成损坏。如,谐波会缩短白炽灯的寿命和引起荧光灯故障。 1.3谐波检测方法 谐波检测的精度和动态响应速度与检测方法密切相关,谐波检测方法的发展方向是高精度、高速度和高实时性,目前常见的谐波检测方法按原理可分为: 1)基于傅里叶变换的谐波检测方法,较多的是采用DFT或FFT获取各次谐波信号的幅值、频率和相位。在测量时间是信号周期的整数倍并满足采样定理的情况下,DFT和FFT检测精度高、实现简单、使用方便,但由于计算量大,实时性受限制,对非整数次谐波的检测存在频谱泄漏和栅栏现象等缺点,为了减小频谱泄漏,常用的方法是在谐波分析运算前增加窗函数。 2)采用人工神经网络的检测方法,目前已有多种采用人工神经网络的谐波检测方法提出。目前对人工神经元网络的研究很多是仿真性研究,其硬件实现的研究还是一个比较薄弱的环节,其实用价值还待进一步发展。 3)基于小波分析的谐波检测方法,小波分析作为时域分析的重要工具,克服了傅里叶分析在频域完全局部化而在时域完全无局部化的缺点,在频域和时域同时具有局部性,能算出某一特定时间的频率分布并将各种不同频率组成的频谱信号分解成不同频率的信号块。 4)基于瞬时无功功率的谐波检测方法,目前广泛应用在有源电力滤波器方案中,其实时性好,延时小,如在检测谐波电流时,因被检测对象电流中谐波的构成和采用滤波器的不同,会有不同的延时,但延时最多不超过一个电源周期。对于电网中典型三相整流桥谐波源,其检测的延时约为1/6周期,具有很好的实时性。 5)自适应谐波检测方法,自适应能力好,能较好跟踪检测且精度较高,但动态响应慢,目前针对自适应谐波检测方法的研究不仅在软件仿真方面,而且在硬件电路实现上日益深入。 6)模拟滤波器法,作为早期的谐波电流检测方法,由于难设计、误差大、对电网频率波动和电路元件参数敏感等,目前已很少使用。常用的模拟滤波器方法有,通过滤波器去除基波分量,得到谐波分量或使用带通滤波器得出基波分量,再与被检测电流相减后得到谐波电流分量。 2、面临问题 随着新能源的发展和大量新技术新产品在电力系统中的应用,精确测量谐波含量和科学分析谐波影响,不仅为谐波的进一步治理提供依据,而且也为电力系统的和谐发展提供保障。 下面简单介绍,光伏并网发电、风力发电、电气化铁路以及电动汽车充电站中的谐波状况,初步分析新能源和新技术的应用,使电力系统面临更严峻的谐波问题。 2.1光伏并网和风力发电的谐波影响 光伏发电的并网逆变器易产生谐波、三相电流不平衡;同时,输出功率不确定性易造成电网电压波动、闪变。在已并网的光伏示范工程中,10kV接入、400V接入以及220V接入电网系统,都检测到谐波电流总畸变率偏高的问题,且随着容量的增大,谐波电流对电网的影响将进一步加大。 风力发电的风电机组中变频器的有限开关频率使得风电机组输出电流发生畸变,除了一些符合变频器基本规律的谐波外,某些特定的谐波也经常出现,如当采用两种极对数的发电机时,发电机极数转换过程中会产生间谐波,当电网阻抗不平衡产生的非特征谐波,以及风电系统谐振效应引起的谐波等。 下图为某一220kV并网风电场一天的电流值曲线,线电压值曲线以及电压总谐波畸变率曲线。 1-a为某风电场一天的电流值曲线,横坐标为时间,纵坐标为电流值(A);1-b为某风电场一天的线电压值曲线图,横坐标为时间,纵坐标为线电压值(V);1-c为某风电场一天电压总谐波含有率曲线图,横坐标为时间,纵坐标为电压总谐波畸变率(%)。 1-a某风电场一天电流值曲线 1-b某风电场一天线电压值曲线图 1-c某风电场一天电压总谐波畸变率曲线图图1某一220kV并网风电场相关曲线 2.2 电气化铁路谐波影响 近年来,我国电气化铁路发展十分迅速。到2020年,全国铁路规划营业里程将达到12万公里以上,铁路电化率将达到60%以上。未来几年,将是铁路建设的高峰,电气化铁路建设进入历史上发展最快的时期。 通过对已运行电气化铁路的电能质量检测(主要是交直型机车电气化铁路),电气化铁路运行对电力系统的影响主要有以下几个方面: 1)注入系统的谐波电流普遍超标,而且3次谐波超标比较严重;造成了部分供电变电站的110kV母线电压THD值超标,同时随着谐波在系统中的流动,还使得部分35kV和10kV母线电压THD值超标,对电气设备的安全运行构成了隐患。 2)机车的不平衡负荷,对系统中一些不平衡保护也会带来一定的影响,可能触发零序启动限值,造成故障录波器的频繁启动,且随着电铁负荷的增加,其中的负序电流已造成一些电厂的负序保护的动作。 3)由于电铁机车负荷不规律且频繁的无功冲击,影响无功补偿设备的正常投运率,同时对相关母线的电压合格率也带来一定的影响。 而上述这些影响,仅限于目前电能质量测试仪器的测试结果,如对谐波的测试,电能质量测试仪器一般在50次谐波以下,更高次的高频谐波通常不加以检测。而电气化机车中,如目前使用得越来越广泛的交–直–交型机车,50次甚至更高次以上的高频谐波比其它类型的机车产生的多,这些高频谐波有可能和馈电系统变压器的漏抗及馈线等分布电容决定的固有谐率发生谐振,引起高次谐波的放大。这些高频谐波,不仅对电力系统有严重影响,而且对机车自身也构成危害,如:机车主回路、补机回路误动作,绝缘恶化;ATC回路、有线通信回路杂音干扰;电容器灯具等电力设备的烧损等。 下图是电力系统某一为交直型机车牵引站供电的110kV变电站一个月的电流值曲线和电压总谐波畸变率曲线。 2-a为系统变电站一个月的电流值曲线,横坐标为时间,纵坐标为电流值(A);2-b为系统变电站一个月的电压总谐波含有率曲线图,横坐标为时间,纵坐标为电压总谐波畸变率(%)。 2-a110kV系统变电站电流曲线图 2-b110kV系统变电站电压总谐波含有率曲线图 图2110kV系统变电站相关曲线 由所测数据可知,110kV的电压总谐波含有率存在超过国家标准含量的现象(国家标准为2%)。 交–直–交型机车的低次谐波有了较大的改善,下图是电力系统某一为交–直–交型机车牵引站供电的220kV系统变电站一个时段的电流值曲线和电压总谐波畸变率曲线。 3-a为系统变电站一个时段的电流值曲线,横坐标为时间,纵坐标为电流值(A); 3-b为系统变电站一个时段的电压总谐波含有率曲线图,横坐标为时间,纵坐标为电压总谐波畸变率(%)。 3-a220kV系统变电站电流曲线图 3-b220kV系统变电站电压总谐波畸变率曲线图图3220kV系统变电站相关曲线 根据所测数据,交-直-交机车的低次谐波得到很大的改善,为交-直-交型机车牵引站供电的220kV变电站电压谐波含有率基本满足国家标准要求(国家标准为2%)。但考虑目前谐波测试仪器一般仅测试50次谐波以下,更高次的高频谐波情况无法获知。 2.3电动汽车充放电站谐波影响 电动汽车作为节能、环保新型交通工具,发展迅速,随之而来的,投运的电动汽车充放电站也越来越多。动力电池充电站属于非线性负荷,接入系统后会使电流发生畸变产生谐波。 下表为某一电动汽车充放电站在稳定工作时,注入低压侧母线谐波电流含有率(三相统计值,取95%概率大值,所选数据为检测数据中的典型值)参见下表。 表2谐波电流含有率 注*:系统在不稳定状态时,3次谐波电流含有率变动较大。 检测结果显示,此电动汽车充放电站为6脉动不控整流负荷,其中次谐波为其特征谐波,。同时,含有少量非特征次谐波。 3、解决方案 3.1谐波分析理论 电网电压信号是不断波动的,其中除了基波和直流分量、整数次谐波,还有间谐波、次谐波以及高频谐波,即使采用跟踪锁相技术,也难以实现严格同步采样。本文选用基于傅里叶变换的谐波检测这一常用方法来获取各次谐波信号的幅值和频率。针对离散傅里叶变换处理后存在的频谱泄漏,包括长范围泄漏和短范围泄漏,通过选择适当的窗函数抑制长范围泄漏,同时根据所选的窗函数的形式对频率、幅值等进行插值修正,达到弥补短范围泄漏造成的误差。 电力系统谐波分析中常用基于余弦窗的组合窗,这类窗当选取时间是信号周期的整数倍时,窗频谱在各次整数倍谐波频率处幅值为零,即使系统信号频率在小范围波动,其泄漏也较小。常用的窗,如Hanning窗、Blackman窗等,主瓣宽度大,旁瓣幅值衰减快,频谱分辨力降低,频谱计算精度提高;而Haming窗等,旁瓣幅值一定时具有最小主瓣宽度,频谱分辨力提高,频谱精度降低,矩形窗具有最窄主瓣但其旁瓣幅值最大;还有折中的如Rife-Vincent(III)窗等。 余弦窗的窗函数表达式为: 当采样点数N=64时,矩形窗、Hanning窗、Hamming窗和Blackman窗在时域和频域的幅频特性如下图。 4-a矩形窗、Hanning窗幅频特性曲线 4-bHamming窗、Blackman窗幅频特性曲线图4常见窗函数在时域和频域的幅频特性 根据所需的精度,选择项数。谐波的幅值修正公式及思路可参见相关文献。 本文采用Blackman窗和文献[7]中两根谱线加权平均的方法修正幅值等方法,对采集的电压数据进行谐波分析。 3.2实验 实验使用的谐波源为FLUKE6100A,它用来校准一些检测仪器的电功率标准源。使用FLUKE6100A可以生成不规则的电能质量现象,如电压谐波,间谐波,波动谐波,闪变以及电压暂升和暂降。 数据采集系统为凌华科技PCI-9846高速数字化仪,ADLINK的PCI-9846板卡是高达40MS/s的采样率16位4通道数字化转换器,可采集高达20MHz宽动态范围输入信号。能很好地处理电力系统的高频谐波。 在Matlab中建立板卡采样设置函数和谐波分析函数,相关实验过程及结果如下。 1)谐波 (a)FLUKE6100A以主频50Hz,幅值1V,叠加3次谐波,幅值10%(与主频幅值相比);7次谐波,幅值5%;9次谐波,幅值1%。 主频50Hz时,PCI-9846采样谐波数据输出波形如下图。 图5主频50Hz谐波采样输出波形 通过谐波分析函数,各次谐波的频率及幅值如下表。 表3主频50Hz谐波频率幅值表 主频50Hz谐波分析输出波形参见下图。 图6主频50Hz谐波分析输出波形 (b)FLUKE6100A以主频51Hz,幅值1V,叠加3次谐波,幅值10%;7次谐波,幅值5%;9次谐波,幅值1%。 主频51Hz时,PCI-9846采样谐波数据输出波形如下图。 图7主频51Hz谐波采样输出波形 通过谐波分析函数,各次谐波的频率及幅值如下表。 表4主频51Hz谐波频率幅值表 主频51Hz谐波分析输出波形参见下图。 图8主频51Hz谐波分析输出波形 2)间谐波 (a)FLUKE6100A以主频50Hz,幅值1V,叠加85Hz间谐波,幅值10%;121Hz间 谐波,幅值10%。 主频50Hz时,PCI-9846采样间谐波数据输出波形如下图。 图9主频50Hz间谐波采样输出波形 通过谐波分析函数,间谐波的频率及幅值如下表。 表5主频50Hz间谐波频率幅值表 主频50Hz间谐波分析输出波形参见下图。 |图10主频50Hz间谐波分析输出波形 (b)FLUKE6100A以主频51Hz,幅值1V,叠加85Hz间谐波,幅值10%;121Hz间谐波,幅值10%。 主频51Hz时,PCI-9846采样间谐波数据输出波形如下图。 图11主频51Hz间谐波采样输出波形 通过谐波分析函数,间谐波的频率及幅值如下表。 表6主频51Hz间谐波频率幅值表 主频51Hz间谐波分析输出波形参见下图。 图12主频51Hz间谐波分析输出波形 3)高频谐波 (a)FLUKE6100A以主频50Hz,幅值1V,叠加82次谐波,幅值10%;95次谐波,幅值5%。 主频50Hz时,PCI-9846采样高频谐波数据输出波形如下图。 图13主频50Hz高频谐波采样输出波形 通过谐波分析函数,各次谐波的频率及幅值如下表。 表7主频50Hz高频谐波频率幅值表 主频50Hz高频谐波分析输出波形参见下图。 图14主频50Hz高频谐波分析输出波形 (b)FLUKE6100A以主频51Hz,幅值1V,叠加82次谐波,幅值10%;95次谐波,幅值5%。 主频51Hz时,PCI-9846采样高频谐波数据输出波形如下图。 图15主频51Hz高频谐波采样输出波形 通过谐波分析函数,各次谐波的频率及幅值如下表。 表8主频51Hz高频谐波频率幅值表 主频51Hz高频谐波分析输出波形参见下图。 图16主频51Hz高频谐波分析输出波形 由于PCI-9846高速数字化仪可采集高达20MHz宽动态范围的信号,且板上支持512MB的存储,方便同时分析电力系统中各种频率信号,包括各次谐波、间谐波、高频谐波以及次谐波,限于篇幅,不再赘述。 4、小结…

摩登3咨询:_解答PLC控制系统抗干扰问题

随着科学技术的发展,PLC在工业控制中的应用越来越广泛。PLC控制系统的可靠性直接影响到工业企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。自动化系统中所使用的各种类型PLC,有的是集中安装在控制室控制工程网版权所有,有的是安装在生产现场和各电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统可靠性,设计人员只有预先了解各种干扰才能有效保证系统可靠运行。 电磁干扰源及对系统的干扰是什么? 影响PLC控制系统的干扰源于一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源控制工程网版权所有,即干扰源。 干扰类型通常按干扰产生的原因、噪声的干扰模式和噪声的波形性质的不同划分。其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同控制工程网版权所有,分为持续噪声、偶发噪声等;按声音干扰模式不同,分为共模干扰和差模干扰。共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是信号对地面的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压送加所形成。共模电压有时较大,特别是采用隔离性能差的电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V以上。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的原因),这种共模干扰可为直流、亦可为交流。差模干扰是指用于信号两极间得干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。 PLC控制系统中电磁干扰的主要来源有哪些呢? (1)来自空间的辐射干扰 空间的辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布极为复杂。若PLC系统置于所射频场内,就回收到辐射干扰,其影响主要通过两条路径;一是直接对PLC内部的辐射,由电路感应产生干扰;而是对PLC通信内网络的辐射,由通信线路的感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小,特别是频率有关,一般通过设置屏蔽电缆和PLC局部屏蔽及高压泄放元件进行保护。 (2)来自系统外引线的干扰 主要通过电源和信号线引入,通常称为传导干扰。这种干扰在我国工业现场较严重。 (3)来自电源的干扰 实践证明,因电源引入的干扰造成PLC控制系统故障的情况很多,笔者在某工程调试中遇到过,后更换隔离性能更高的PLC电源,问题才得到解决。 PLC系统的正常供电电源均由电网供电。由于电网覆盖范围广,将受到所有空间电磁干扰而在线路上感应电压和电路。尤其是电网内部的变化,入开关操作浪涌、大型电力设备起停、交直流转动装置引起的谐波、电网短路暂态冲击等,都通过输电线路到电源边。PLC电源通常采用隔离电源,但其机构及制造工艺因素使其隔离性并不理想。实际上,由于分布参数特别是分布电容的存在,绝对隔离是不可能的。 (4)来自信号线引入的干扰 与PLC控制系统连接的各类信号传输线,除了传输有效的各类信号之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器或共用信号仪表的供电电源串入的电网干扰,这往往被忽略;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。对于隔离性能差的系统,还将导致信号间互相干扰CONTROL ENGINEERING China版权所有,引起共地系统总线回流,造成逻辑数据变化、误动和死机。PLC控制系统因信号引入干扰造成I/O模件损坏数相当严重,由此引起系统故障的情况也很多。 (5)来自接地系统混乱时的干扰 接地是提高电子设备电磁兼容性(EMC)的有效手段之一。正确的接地控制工程网版权所有,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC系统将无法正常工作。 PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等。接地 系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层必须一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层,当发生异常状态加雷击时,地线电流将更大。 此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内有会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。PLC工作的逻辑电压干扰容限较低控制工程网版权所有,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存储,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。 (6)来自PLC系统内部的干扰 主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路 互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。这都属于PLC制造厂对系统内部进行电磁兼容设计的内容,比较复杂,作为应用部门是无法改变,可不必过多考虑CONTROL ENGINEERING China版权所有,但要选择具有较多应用实绩或经过考验的系统。 怎样才能更好、更简单解决PLC系统干扰? 1)选用隔离性能较好的设备、选用优良的电源,动力线和信号线走线要更加合理等等,也能解决干扰,但是比较烦琐、不易操作而且成本较高。 2)利用信号隔离器这种产品解决干扰问题。只要在有干扰的地方,输入端和输出端中间加上这种产品,就可有效解决干扰问题。 为什么解决PLC系统干扰都选信号隔离器呢? 1)使用简单方便、可靠,成本低廉。 2)可大量减轻设计人员、系统调试人员工作量,即使复杂的系统在普通的设计人员手里,也会变的非常可靠。 信号隔离器工作原理是什么? 首先将PLC接收的信号,通过半导体器件调制变换,然后通过 光感或磁感器件进行隔离转换,然后再进行解调变换回隔离前原信号或不同信号CONTROL ENGINEERING China版权所有,同时对隔离后信号的供电电源进行隔离处理。保证变换后的信号、电源、地之间绝对独立。 信号隔离器功能是什么? 一:保护下级的控制回路。 二:消弱环境噪声对测试电路的影响。 三:抑制公共接地、变频器、电磁阀及不明脉冲对设备的干扰;同时对下级设备具有限压、额流的功能是变送器、仪表、变频器、电磁阀PLC/DCS输入输出及通讯接口的忠实防护。标准系列导轨结构,易于安装,可有效的隔离:输入、输出和电源及大地之间的电位。能够克服变频器噪声及各种高低频脉动干扰。 现在市场有那么多品牌的隔离器,价格参差不齐控制工程网版权所有,该怎么选择呢? 隔离器位于二个系统通道之间CONTROL ENGINEERING China版权所有,所以选择隔离器首 先要确定输入输出功能,同时要使隔离器输入输出模式(电压型、电流型、环路供电型等)适应前后端通道接口模式。此外尚有精度﹑功耗﹑噪音﹑绝缘强度﹑总线通讯功能等许多重要参数涉及产品性能,例如:噪音与精度有关、功耗热量与可靠性有关控制工程网版权所有,这些需要使用者慎选。总之CONTROL ENGINEERING China版权所有,适用、可靠、产品性价比是选择隔离器的主要原则。 隔离器相关文章:隔离器原理

摩登3娱乐登录地址_工业控制的现场总线技术

  1.现场总线数据传输的及时性和系统响应的实时性:一般地讲,过程控制系统的响应时间要求为0.01~0.5S,制造自动化系统的响应时间是0.5~2S,IT网络的响应时间为2~6S,因此在IT大部分使用中,实时性是可以忽略的。   2.现场总线强调在恶劣环境下数据传送的完整性、可靠性:现场总线具有在粉尘、高温、潮湿、振动、酸(碱)腐蚀,特别是电磁和无线电干扰等的工业环境长时间、连续、可靠、完整传送数据的能力。能够抗工业电网的浪涌、失波、跌落和尖峰干扰等。在可燃或易爆场合,还要求现场总线具有本质安全性能 二、标准与非标准现场总线。   市场上出现了三十多种牌号的现场总线及其系统,并且都称是真正的现场总线,可应用于各种领域。实际上,市场上的现场总线应分为标准和非标准两种。   1.标准现场总线是符合IEC(国际电工技术委员会)现场总线协议模型框架,具有近似标准数字信号制的现场总线产品,这些主要有IEC61158、FF(基金会现场总线)、LonWorks、Pro-tibus、WorldFIP现场总线。适用于过程控制、制造自动化和楼宇自动化等。   2.非标准现场总线,其余的现场总线都可看作是非标准现场总线,它们大多具有专用标准,适于专用领域。不会向国际标准靠拢。 三、FCS与DCS   基于FF的FCS(现场总线控制系统)将取代传统DCS(分布式控制系统)成为控制系统主角。下面就几个主要方面进行对比。   1.数字化   1)FCS:全数字化,纯数的通信使过程控制具有更高的可靠性。在FCS中,从传感器、变送器到调节器,一直是数字信号,这就使得更复杂、更精确的信号处理得以实现。普通的噪音很难扭曲现场总线控制系统里的数字信号。数字通信的查错功能可检出传输中的误码。   2)DCS:半数字化,在传统DCS系统里,温度和压力变送器须将它们测到的原始数字信号在送入DCS前转换成4-20mA模拟信号,在模拟系统中,噪音及其他信号扭曲无法被检测。   2.可互操作性:采用具有可互操作性和现场总线系统,用户可以在性能、价格、质量和售后服务等因素基础上,选择最好的硬件产品,并省时省力地将它们集成为一体。   1)现场总线自动化设备的可互操作性主要是通过对功能模块及其参数的标准化而实现,具有极好的可互操作性。   2)大多数用于DCS和智能型变送器间的通信协议是DCS制造商独家采用的专用封闭系统。   3.分散性   1)FCS:采用的是完全分散式体系,它的控制全部分散到现场,控制回路由现场设备实现。   2)DCS:采用一个或多个”控制单元”对多回路进行控制,其控制部分分散到一些控制板上,每个控制板上又有多个回路的半分散式体系。   4.可靠性、可维护性和经济性   现场总线控制系统采用数字总线式通信线路代替传统DCS中一对一的I/O连线,对于大规模I/O系统来说,减少了由连线带来的不可靠,同时降低了布线成本,与传统DCS技术相比,可节省电缆、调试、维护成本40%以上。   5.现场总线已经发展成为可以取代DCS的新型的FCS控制系统。DCS与FCS并存是可能的,但DCS并不适合与现场总线集成。如果现场总线连接到DCS上,它的大多数优势便无法发挥出来。因为分布在现场设备中的功能块组态、状态、诊断、校验、设备自身信息以及来自现设备的管理信息等均无法完全映射到DCS中。 四、EIC(电气传动、仪表、计算机)一体化   在由现场总线构成的控制系统FCS中,仪表已发展成为具有综合功能的智能仪表,也就是具有过去实现仪表控制的DCS的功能。现场控制器实际上是过去PLC功能的分散,它代替了用于电气传动控制的PLC。从以上两点不难看出,现场总线控制系统FCS,正是一个实现电气传动控制、仪表控制和计算机控制一体化的系统结构,而这种结构恰恰是钢铁工业自动化用的较多而又急需的控制系统结构。 五、现场总线进展情况   目前,较为流行的现场总线有FF、LonWorks、Profibus、WorldFIP、CAN、HART(过渡协议)等,这些现场总线和过渡协议在我国(主要是北京)都有了代表处或挂靠单位,并且大多数都有不同程度的开发和应用。其中FF和HART列入”九五”攻关项目,参加现场总线智能仪表的研究开发单位主要有:西安仪表集团、上海工业自动化仪表研究所、重庆工业自动化仪表研究所、上海自动化仪表股份公司、重庆川仪集团、北京华控技术公司等,专门攻克HART协议和FF协议通信软硬件技术难关。   1.开发的产品主要有:   1)HART变送器(包括智能温度变送器、智能压力变送器、智能流量变送器);   2)HART智能电动执行机构;   3)HART网桥;   4)现场设备管理系统软件;   5)FF现场总线和CAN总线园卡、接口等HART的攻关任务已基本完成,今年就可验收。FF的攻关明年上半年可完成并验收。   目前,较流行的现场总线中,FF、Profibus、LonWorks、CAN\HART协议书籍报刊上介绍的比较多,其中HART和LonWorks在我国开发和应用较多。下面只简单介绍一下WorldFIP的情况。   2.WorldFIP:WorldFIP现场总线不论高速还是低速,只有一套通信协议,可以不需要任何网桥或网关,低速与高速的衔接只用软件完成。   WorldFIP组织认为,它的生产者/使用者(Producer/Consumer)模式和总线仲裁器(BUSAr-biter)的调度方式特别适合工业过程控制的现场总线系统。它的很多优点都与此有关。FF与IEC标准草案都采用了这种通信模式,只是名称不同。FF称为发布方/接收方(Publi-sher/Subscriber)与链接调度器(LAS),实际方式与WorldFIP基本一致。这也说明了为什么WorldFIP支持IEC标准,因为他们向IEC靠拢在技术上是比较容易的。   目前,WorldFIP的应用领域为:输电、铁路运输、地铁、化工、空间技术、汽车制造等。1998年5月,WorldFIP组织在中国建立了技术推广中心,并把注意力放在中国的能源和铁路两个将大力发展的领域。

摩登3平台注册登录_PLC系统在使用及应用过程中注意问题

一、简述 多年来,可编程控制器(以下简称PLC)从其产生到现在,实现了接线逻辑到存储逻辑的飞跃;其功能从弱到强,实现了逻辑控制到数字控制的进步;其应用领域从小到大,实现了单体设备简单控制到胜任运动控制、过程控制及集散控制等各种任务的跨越。今天的PLC在处理模拟量、数字运算、人机接口和网络的各方面能力都已大幅提高,成为工业控制领域的主流控制设备,在各行各业发挥着越来越大的作用。 二、PLC的应用领域 目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况主要分为如下几类: 1.开关量逻辑控制取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。 2.工业过程控制在工业生产过程当中,存在一些如温度、压力、流量、液位和速度等连续变化的量(即模拟量),PLC采用相应的A/D和D/A转换模块及各种各样的控制算法程序来处理模拟量,完成闭环控制。PID调节是一般闭环控制系统中用得较多的一种调节方法。过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。 3.运动控制PLC可以用于圆周运动或直线运动的控制。一般使用专用的运动控制模块,如可驱动步进电机或伺服电机的单轴或多轴位置控制模块,广泛用于各种机械、机床、机器人、电梯等场合。 4.数据处理PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。数据处理一般用于如造纸、冶金、食品工业中的一些大型控制系统。 5.通信及联网PLC通信含PLC间的通信及PLC与其它智能设备间的通信。随着工厂自动化网络的发展,现在的PLC都具有通信接口,通信非常方便。 三、PLC的应用特点 1.可靠性高,抗干扰能力强高可靠性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。这样,整个系统将极高的可靠性。 2.配套齐全,功能完善,适用性强PLC发展到今天,已经形成了各种规模的系列化产品,可以用于各种规模的工业控制场合。除了逻辑处理功能以外,PLC大多具有完善的数据运算能力,可用于各种数字控制领域。多种多样的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。 3.易学易用,深受工程技术人员欢迎PLC是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,为不熟悉电子电路、不懂计算机原理和汇编语言的人从事工业控制打开了方便之门。 4.系统的设计,工作量小,维护方便,容易改造PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时日常维护也变得容易起来,更重要的是使同一设备经过改变程序而改变生产过程成为可能。这特别适合多品种、小批量的生产场合。 伺服电机相关文章:伺服电机工作原理 上一页 1 2 下一页