分类目录:摩登3官网注册

摩登3平台开户_单片机的定义是什么

单片机是指一个集成在一块芯片上的完整计算机系统。尽管它的大部分功能集成在一块小芯片上,但是它具有一个完整计算机所需要的大部分部件:CPU、内存、内部和外部总线系统,目前大部分还会具有外存。同时集成诸如通讯接口、定时器,实时时钟等外围设备。而现在最强大的单片机系统甚至可以将声音、图像、网络、复杂的输入输出系统集成在一块芯片上。 单片机也被称为微控制器(Microcontroller),是因为它最早被用在工业控制领域。单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。 早期的单片机都是8位或4位的。其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。此后在8031上发展出了MCS51系列单片机系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大的提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。 单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。事实上单片机是世界上数量最多的计算机。现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。而个人电脑中也会有为数不少的单片机在工作。汽车上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作!单片机的数量不仅远超过PC机和其他计算的综合,甚至比人类的数量还要多。

摩登3内部554258_基于PCI-9846H死区时间引起的电压波形畸变

 挑战   目前国内外基于电机模型建立的控制策略在电机的低速脉动、高速弱磁、稳定性和输出转矩一致性等方面还存在诸多问题。为了能更好的解决电机的低速转矩脉动的问题,本文建立了引入逆变器死区时间的电机模型,逆变器死区时间很短并且IGBT的开关过程还存在延时和滞后的问题,为了能够准确的捕捉死区时间引起的电压波形畸变,要求数据采集卡有很高的采样率,除此之外,为了使研究结果更加精确,需要板卡具有较高的信噪比以及有效位。综上所述,在死区时间引起的电压波形畸变的研究中,需要一块高采样率、高精度以及高信噪比的板卡以满足对信号捕捉的要求。   解决方案   首先对死区效应进行分析,针对仿真结果提出一种减小死区时间引起电压波形畸变的方法,通过应用具有16位高分辨率A/D转换器并且同步采样采样率高达16MS/s的数据采集卡PCI-9846H配合电流传感器、电压传感器、转矩仪、电机及其控制器、测功机等设备完成车用电机试验平台的搭建,通过凌华公司提供的LABVIEW相关驱动程序进行上位机数据采集系统的开发设计,通过对电压、电流、转矩、转速信息的采集与分析,对本文提出的减小死区时间对输出电压波形畸变的方法进行了验证,试验结果基于PCI-9846H的数据采集系统具有高采样率和高采样精度,能够满足本文对死区时间引起的电压波形畸变信号捕捉的要求,同时本文提出的改进方法,能够很好的改善电压的输出波形,进而能够减少死区时间对电机在低速工况时性能的影响   引言   电机驱动系统是电动汽车的核心部分[1-2]。按所使用电机的类型可以分为直流电机驱动系统和交流电机驱动系统[3],而交流电机驱动系统中,感应电机容易被接受,使用较广泛,永磁同步电机由于其本身的高能量密度与高效率,具有比较大的竞争优势,应用范围日益增多。   为了满足整车动力性能要求,电机驱动系统要有较高的动态性能,目前比较成功的控制策略包括:基于稳态模型的变频变压控制(VVVF)、基于动态模型的磁场定向控制(FOC)以及直接转矩控制(Direct Torque Control——DTC)。其中直接转矩控制是在矢量控制基础之上发展起来的,其主要优点是:摒弃了矢量控制中的解耦思想,直接控制电动机的磁链和转矩,并利用定子磁链定向代替了矢量控制中的转子磁链定向,避开了电动机中不易确定的参数(转子电阻等)识别。目前国内外的永磁同步电机的数学模型只是基于中线不接出三相对称绕组条件下,引入转子磁链、定子漏抗、及各绕组的互感而建立的,忽略了轴承及其他杂散损耗以及PWM波等因素对电机的影响,因此基于该电机模型建立的控制策略在电机的低速脉动、高速弱磁、稳定性和输出转矩一致性等方面还存在诸多问题[5]。为了能更好的解决直接转矩控制下电机的低速转矩脉动的问题,本文建立了引入逆变器死区时间的电机模型,通过对死区时间的产生和作用机理进行分析,得出引起输出电压波形畸变以及相位变化的关键影响因子,针对仿真结果提出一种减小死区时间引起电压波形畸变的方法,通过应用PCI-9846H、电流传感器、电压传感器、转矩仪、电机及其控制器、测功机等设备完成车用电机试验平台的搭建,上位机通过LABVIEW编写数据采集系统,通过对电压、电流、转矩、转速信息的采集与分析,对本文提出的减小死区时间对输出电压波形畸变的方法进行了验证。   1.逆变器死区时间的研究   1.1逆变器死区时间产生机理   对于永磁同步电机驱动而言,在IGBT正常工作时,上下桥臂是交替互补导通的。在交替过程中必须存在上下桥臂同时关闭的状态,确保在上/下桥臂导通前,对应的互补下/上桥臂可靠关断,这段上下两个桥臂同时关断的时间称为死区时间。针对目前市场上IGBT的调研发现,逆变器死区时间一般为3~7μs[6]。在电机工作在一定转速以上时,由于基波电压足够大,死区效应对基波电压影响较小,所以不为人们所重视;但电机工作在低速时,基波电压很小,死区效应对基波电压影响相对较大,死区时间越长,逆变器输出电压的损耗越大,电压波形的畸变程度也会变大,除此之外死区时间还会影响输出电压的相位,使PWM波形不再对称于中心,造成电机损耗增加,效率降低,输出转矩脉动等。图1所示为死区时间产生的机理以及对输出电压的影响,其中V为理想的PWM电压输出波形,Ua-为负母线电   压,Ua+为正母线电压,v为误差电压,Ia为输出电流。      图1 死区效应   由图1所示,可以发现误差电压具有以下特征[7]:   1) 在每个开关周期内均存在一个误差电压脉冲;   2) 每个误差电压脉冲的幅值均为Ud;   3) 每个误差电压脉冲的宽度均为Td;   4) 误差电压脉冲的极性与电流极性相反;   尽管一个误差电压脉冲不会引起输出电压太大的变化,但是一个周期内总的误差电压引起的电压波形的畸变就比较严重,下面就对半个周期内误差电压对输出电压波形的影响进行分析。   1.2死区时间引起输出电压波形畸变的分析   利用平均电压的概念[8],假设载波频率非常高,不含电流在一个载波周期内过零的情况,则半个周期内误差电压脉冲序列的平均值为:         图3所示为fc=4kHz,M=0.8时,输出电压随着不同的功率因数角的变化曲线图,可以看出功率因数角越高,死区时间对输出电压的影响越小。当死区时间比较短时,功率因数角的改变对输出电压的影响不大,当Td=7μs时,增大功率因数角可以减小电压波形的畸变,但是增大功率因数角会减小功率因数,影响电机的效率,在功率因数角的设计中需要综合考虑这两方面。      由以上分析可知,当载波频率一定时,死区时间引起电压波形畸变的程度受电压调制比的影响,当电压调制比较低时,死区时间对输出电压波形畸变会相对增大,这也正是引起电动汽车在低速转矩脉动的因素之一。从另一方面来看,提高电压调制比可以在一定程度上抑制波形畸变,图5所示为改进的控制框图,通过转速传感器检测电机的运行状态,当电机低速运行时,减少电池输出的直流母线电压,从而提高电压调制比,来减小死区时间对输出电压的影响,通过上述控制调节电池的输出电压,将电压调制比控制在一个较高的范围,从而减少死区时间引起的电压波形的畸变。   2.基于PCI9846H的数据采集系统设计   2.1硬件设计与实现   2.1.1 电压传感器、电流传感器、转矩仪的选型及特性分析   驱动电机系统的工作电压和电流范围比较大,从几十伏(安)到上千伏(安),这就要求电压和电流传感器不仅要有良好的绝缘性,还要将输入信号和输出信号完全隔离,同时,传感器的响应时间也应优先考虑。试验台上驱动电机转速与转矩的测量需要转矩仪有很好的输出信号的稳定性和重复性。结合电机试验的要求,本文从传感器的量程、精度以及动态响应时间方面考虑,分别选择电压传感器CV 3-500,电流传感器LF 505-S,转矩仪F1i S,其特性如表1所示。      2.1.4 数据采集卡   本论文的研究对数据采集卡提出了很高的要求,由上文可知,死区时间一般为3~7μs,实际中IGBT的开关过程有延时和滞后,以东芝公司的MG25N2S1型25A/1000V IGBT模块为例,其电压上升和下降时间分别为0.3μs和0.6μs,为了能够真实的捕捉死区时间引起的电压波形畸变,工程中用到的采样率通常为信号中最高频率的6-8倍,这就要求数据采集卡的采样率至少要达到10MS/s。   试验平台采用凌华公司生产的PCI-9846H高端数据采集卡,这是一款4通道同步并行采集,每通道采样率高达16MS/s的多功能数据采集卡,该采集卡具有4个同步单端模拟输入和16位的高分辨率A/D转换器,同时PCI-9846H在总谐波失真(THD)、信噪比SNR、无杂散动态范围(SFDR)等方面性能能够满足本文对试验精度的要求。此外,板载512M Byte内存,作为数据暂存空间,可以延长连续采集的时间,其数据传输方式采用DMA的方式,无需CPU直接控制传输,也没有中断处理方式那样保留现场和恢复现场的过程,通过硬件为RAM与I/O设备开辟一条直接传送数据的通路,使CPU的效率大为提高,提高了数据采集的实时性和动态响应特性,该数据采集卡能够满足本文对采样率和精度的研究要求,其主要特性如表2所示。      本文所研究的信号的频率较高,因此需要板卡有足够的带宽满足相应的研究要求。PCI-9846H-3dB-3dB带宽为20MHz,能够满足本文对频谱分析的要求,此外板卡的系统噪声在±1V时仅为5.0LSBRMS,其在±1V时的频谱特性如图6所示。      2.1.5 信号调理电路   从传感器得到的信号大多要经过调理才能进入数据采集设备,信号调理功能包括放大、隔离、滤波、激励、线性化等。由于不同传感器有不同的特性,因此,除了这些通用功能,还要根据具体传感器的特性和要求来设计特殊的信号调理功能。   本系统所用的信号调理板主要实现两方面的功能:   (1)实现传感器信号的低通滤波。信号进入计算机前必须要经过低通滤波,本文由信号调理板采用RC低通滤波器来实现。   (2)对信号进行转换。对于模拟信号,PCI-9846H数据采集卡只能接收-5V~+5V的电压信号,而霍尔电压传感器输出的信号为(0~10)V的电压信号,霍尔电流传感器输出的信号为(0~100)mA的电流信号,所以必须加入信号调理板对传感器输出的信号进行转换。   由以上硬件的选择确定本系统的硬件拓扑结构如图7所示,图8所示为试验现场布线图。      2.2基于LABVIEW的系统软件设计   LABVIEW集数据采集、仪器控制、工业自动化等众多功能于一身,为图形化虚拟仪器的开发提供了最佳的平台[9]。本文用LABVIEW进行数据采集系统上位机软件的编制,完成数据采集的任务:   (1) 对试验环境和测试电机的信息进行登记;   (2) 测试项目的选择以及试验前的标定;   (3) 对数据进行计算,存储以及屏幕显示等。   在使用PCI-9846H板卡之前需要安装板卡驱动,图9所示为安装好了板卡驱动之后,在设备管理器会看到相应硬件设备的增加。与此同时,为了能够应用LABVIEW进行上位机数据采集系统的开发,需要安装DAQPilot中支持LABVIEW的板卡驱动程序。除此之外,在LABVIEW中使用该板卡进行数据采集之前必须通过DAQMASTER为该块板卡进行相关的初始化工作,其中包括缓存区大小的设置,通道名称的设置等初始化工作,图10-11显示了利用DAQMASTER对PCI-9846H进行相关的初始化工作。            在试验中,对于电量和非电量信号采集之前都选择静态标定的方法对其进行标定,其中对于控制器输入电压/电流以及控制器输出电压/电流利用PCI-9846H板卡的四个通道进行同步采集。在转矩/转速测量时,虽然转矩仪输出的是频率信号,但是本文按照模拟量对其进行采集,通过在程序中对输入信号的处理计算出信号的频率从而能够得到相应的转矩和转速值,这样可以在程序中减少一部分代码量提高程序的执行效率同时利用板载同步时钟保证转矩/转速采集的同步性。   2.3试验结果分析   本文利用基于PCI-9846H的数据采集系统完成了对电机电量与非电量的采集,图16所示为直流母线电压电流与交流电压电流动态数据波形,图17和图18分别显示了改进前后电流的输出波形以及转矩的输出波形。      试验结果表明基于PCI-9846H的数据采集系统具有高采样率和高采样精度,能够满足本文对死区时间引起的电压波形畸变信号捕捉的要求,对采集数据的分析表明本文所提出的根据电机的工作状态调节直流母线电压保持电压调制比在较高的范围内的方法能够很好的改善电流与转矩的输出波形,特别是在电机低速工况时效果尤为明显,进而能够减少死区时间对电机在低速工况时性能的影响。 作者信息: 吕晨光,宋强,靳建波(北京理工大学,机械与车辆学院,北京,100081)   参考文献   [1]孙逢春,程夕明。电动汽车动力驱动系统现状及发展[J]。汽车工程,2000.022(004).220~224,229.   [2]翟丽。电动汽车交流感应电机驱动控制系统及其特性研究[D]。北京理工大学:2004   [3]C.C.Chan,K.T.Chau. Modern Electric Vehicle Technology. UK: Oxford University Press, 2001   [4]宋强。电动车辆动力驱动系统测试平台设计开发及试验研究[D]。北京理工大学:2004.   [5]董玉刚。电传动履带车辆永磁同步电机控制技术研究[D]。北京理工大学:2010   [6]Choi.J.W, “Inverter output voltage synthesis using novel dead time compensation”,IEEE   Transaction on Power Electronics, Vol.11:221-227, 1996.   [7]刘明基等。逆变器死区时间对永磁同步电动机系统的影响[J]。微特电机,2001.3:12-15.   [8]章建锋。死区时间对输出电压的影响分析[J]。电力电子技术,2007.8:31-33.   [9]顾进超。车辆电传动试验台数据采集系统的开发[D]。北京理工大学:2004 电流变送器相关文章:电流变送器原理 电流传感器相关文章:电流传感器原理

摩登3娱乐登录地址_浅谈RS-485通信卡及其应用

  本文介绍了RS-485通信卡方式的特点、使用方法以及在实际中求用VB5编程实现微机与单片机通信的方法和应注意的问题。   在工业控制领域,数据采集与传输是经常性的工作,RS-485协议通信由于采用差分方式接收,对共模干扰抑制能力强,故广泛应用于工业控制领域。   实现RS-485通信的两种方法   智能仪表是随着80年代初单片机技术的成熟而发展起来的,现在世界仪表市场基本被智能仪表所垄断。究其原因就是企业信息化的需要,企业在仪表选型时其中的一个必要条件就是要具有联网通信接口。最初是数据模拟信号输出简单过程量,后来仪表接口是RS232接口,这种接口可以实现点对点的通信方式,但这种方式不能实现联网功能。随后出现的RS485解决了这个问题。   微机标准通信适配器满足RS-232C协议标准,在波形畸变小于10%的条件下,最大传输距离为50英尺(约15.24米),最高传输速率小于20kbps,无法满足工业现场数据较远距离和较高速率传输的要求。微机要实现RS-485协议通信可以采用两种方法:第一种是采用RS-232C与RS-485转换接口装置;第二种是采用RS-485通信卡,插在微机主板扩展槽上。采用第一种方法的优点是硬件装置安装简单,软件编程相对简单;缺点中通信速率仍然限制在20kbps以内(RS-232C协议的限制)。第二种方法的优点是通信速率较高,可达921.6kbps;缺点是通信卡需安装在微机扩展槽上,软件需安装通信卡的驱动程序及进行必要的设置。   RS-485通信卡的特点和连接方式   RS-485通信卡的通信波特率由50bps至921.6kbps可选;通常每卡有两个通信口,各支持32个节点,共64个节点;软件环境支持DOS、WINDOWS95、WINDOWS NT。通信联接方式可以采用点对点半双工方式、点对点全双工方式、多点半双工方式和多点全双工方式。   RS-485通信卡的应用   安装驱动程序   RS-485通信卡随卡带有驱动程序,第一次使用通信卡时须首选安装驱动程序,设置通信卡的I/O地址、中断号、通信口号等内容,以后系统运行时无需再次设置。   VB通信软件的特性   本例通信软件是采用VB5.0在WINDOWS95平台下实现的,数据以随机文件的形式存放。由于WINDOWS不支持对系统I/O端口的直接访问,因此在WINDOWS下实现串行通信的简便方法就是利用VB提供的通信软件MSComm。MSComm软件中几个最重要和最常用的属性是:CommPort 设置或返回通信端口的编号;其格式为:MSComm.Comm Port=n,其中no 1~99中的任何整数值。若这个端口不存在,当用PortOpen属性打开端口时,就会产生错误。   Settings设置或返回波特率、数据位、停止位等参数。例如:MSComm1.Settings=”9600,N,8,1″   其中等号右边的参数中,每一部分表示通信波特率。第二部分为校验方式,N表示不校验;E表示偶校检;O表示奇校验;S表示空格校验;M表示符号校验。第三部分为数据位数。最后是停止位位数。   PortOpen设置或返回通信口的状态,若为TRUE,打开通信口;若为FALSE,则关闭通信口。   Input从接收缓冲区取出并返回字符串。   Output向发送缓冲区写入字符。   InBuffSize设置或返回接收缓冲区字节值。   InputLen设置或返回从缓冲区读字符串时每次读出的字符串个数;若设置InputLen为0, 则读缓冲区时,一次读出整个缓冲区内容。   结语   RS-485通信卡以其具有较高的通信速率(921kbps)、较强的抗干扰能力和较低的价格,在工业控制领域具有较强竞争力,极具实用价值。笔者将RS-485通信卡成功地应用于微机与单片机数据采集系统的串行通信,微机侧采用VB编制通信及数据处理软件,单片机侧采用汇编语言编程。VB中采用CHR()函数进行数据转换是微机与单片机实现16进制数据通信的关键。 数字通信相关文章:数字通信原理 通信相关文章:通信原理

摩登3新闻554258:_一种高性能计算机可编程控制器

1 引言 随着现代计算机技术的发展,可编程控制器有了长足的发展。1968年,美国最大的汽车制造商gm公司为了自身汽车工业的跨越式发展,提出新一代控制器应具备十大条件。这成为了当代可编程控制器的发展动向。1969年,美国数字设备公司(dec)成功研制世界第一台可编程序控制器pdp-14,并在gm公司的汽车自动装配线上首次使用并获得成功。从此,这项新技术迅速在世界各国得到推广应用。20世纪70年代,日本、西欧国家也相继引进和研制出自己的第一台可编程控制器。我国从1974年开始研制,1977年开始工业推广应用。可编程控制器现在已经成为我国工业设备控制使用增长速度最快的控制器。由于控制器出现以后,名称混乱,功能也各不相同,因此美国电气制造商协会(nema)和国际电工委员会(iec)分别于1980年和1985年对可编程控制器(pc)进行了定义。这就是后来说的“蓝领计算机”。随着现代计算机技术、网络通信技术、现代自动控制技术的高速发展,可编程控制器的数学处理能力、网络通讯能力和智能控制能力等得到大大提高。在1994年可编程计算机控制器(programmable computer controller简称pcc)的概念被提出来,它代表了当今工业控制技术的发展趋势。奥地利贝加莱(br)工业自动化公司的pcc为其典型代表,其是集计算机技术、通信技术、控制技术(3g技术)为一体的新型工业控制装置。 2 pcc功能模块构成及其特点 pcc一种计算机控制系统,具有中央处理器(cpu),输入/输出(i/o)接口、电源等,其构成如图1所示。pcc实现了系列化、模块化、标准化的设计,使得其设计、安装比较容易,调试周期短、维护简单等特点,其所有的输入输出接口电路均采用光电隔离,可有效抑制外部干扰源对pcc的影响。另外,pcc模块品种丰富,通信接口完善,配置简单,可较容易组网通信。现代的pcc已经从较小规模的单机顺序控制发展到包括过程控制、运动控制、步序控制等,广泛应用在塑料、包装、印刷、造纸等许多行业中的控制,这些应用极大地提高了这些行业的生产效率和产品的质量。 程序执行上,pcc采用分时多任务操作系统,它可以很好地实现实施多任务,用户可以根据自己的生产需要,编制自己的程序并设定循环时间。控制系统为用户提供了八个不同循环时间和不同优先级别的任务等级,同时它是一个可自定义、具有确定性的实施多任务操作系统。同时,为了能够给技术人员和编程人员提供更多的服务,方便用户得到自己关心的数据和控制系统状态等情况,pcc编程系统为用户提供了很多不同的诊断工具。这些工具可以显示正在运行的概要,可以读取、存储和修改信息,可以深入系统并优化它。 图1 pcc模块功能构成 3 贝加莱2000系列pcc br2000系列pcc有2003系列和2005系列。包括:cpu模块、总线控制器模块、通讯模块、电源模块、现场总线模块、数字量、模拟量输入、输出模块计数和定位模块等。br2000系列pcc硬件具有如下特点[2]:①硬件模块化;②网络通信能力;③有与hmi通讯的接口;④有工业汁算机能力;⑤emc符合en61131—2;⑥可靠的i/o总线协议;⑦独立的i/o总线和系统总线⑧具有工业强度的端子排;⑨多i/o总线系统的高性能。 图2 2003系列pcc (1)2003系列小型pcc(见图2) 2003系列属于小型pcc,其特点为:2003系列采用了极高性价比的紧凑型设计,节省了装备的空间;can总线网络实现了操作面板、显示单元、驱动以及其他外围设备直接的连接;远程i/o系统实现了通过can进行远程控制的可能;大量的旋入式模块也确保了任何传感器和执行器信号的连接;实现机器或系统中分布式或集成单元,单元间的主干通信通过标准的以太网tco/ip网络或现场总线实现,在每个单元中,2003系列可通过驱动操作面板和外围设备进行扩展,依据机器单元所需的计算能力选择合适的cpu模块;2003系列的紧凑型控制器也适用于大型系统,如果带本地i/o的cpu通过ethernet powerlink与各个分布式组件连接,便可创建一个用于高动态运动任务 上一页 1 2 3 下一页

摩登3平台登录_基于TMS320F2812 DSP捕获单元的柴油发电机组的转速测量系统

1 引言 本文引用地址:http://www.eepw.com.cn/article/201706/347888.htm   应用于高层建筑、银行、机场和油田等场合的柴油发电机组,必须采用相应方法控制其供电电压和频率,以确保在机组运行中具有良好的电气性能,满足应用要求。其频率控制一般是通过转速控制实现,目前应用较多的为模拟式转速调节器。由于模拟式调节器不易实现复杂控制规律、结构复杂。故采用数字式控制器。数字式控制器具有算法灵活.可实现复杂控制规律、抗干扰能力强等特点,是实现柴油发电机组转速的高精度调节的理想选择。因此,这里提出了一种以TMS320F2812 DSP为核心的转速数字控制器的测速功能系统设计.该设计方案是进一步实现转速数字控制的基础。 2 转速测量原理   在测量和控制柴油发电机组转速时,需用转速传感器检测机组转速.柴油发电机组经常使用磁电式转速传感器(图1),该转换传感器是在永久磁铁上安装一感应线圈.并将传感器安装于柴油机飞轮附近.与柴油机的测速飞轮构成一个磁回路。当柴油发电机组转动时.由于飞轮带有齿槽,就会使回路磁阻发生变化,从而在转速传感器的线圈中产生感应电势,即转速电压信号,转速传感器线圈输出的平均电压值为0.5~6 V,其频率为:   f=Zn/60 (1)   式中:Z为柴油机飞轮齿数,n机组转速。   将传感器输出信号调理后变成速度频率的数字信号输入TMS320F2812 DSP的捕获单元,捕获被测信号电平的跳变沿(比如上升沿),从而可在被测信号的一个周期内,对标准时钟f0的周期数计数,若得到的周期数为K,则显然被测信号的周期(T)可表示为:   T=K/f0 (2)      于是,由(1)式和(2)式可得柴油发电机组的转速为:   n=60f0/ZK (3)   通过DSP程序按(3)式即可计算机组转速。 3 转速测量系统设计 3.1 硬件电路设计   若飞轮齿数Z为159,柴油机额定转速为1 500 r/min,根据上述测量原理,给出以TMS320F2812 DSP为核心的转速测量系统的硬件设计,如图2所示。   磁电式转速传感器的输出信号首先由R1和C组成的滤波电路滤波,其截止频率fc根据柴油机在额定转速时传感器输出信号的频率确定,而因fc=l/(2πR1C),从而确定R1和C,可见这两者的取值与柴油机转速和飞轮齿数有关。需要注意的是这两者取值应按实际设备参数确定。传感器输出模拟信号,要送入DSP需将其转换为数字信号,因此采用VQ开关状态,经VQ转换后其集电极输出信号需由反相施密特触发器变换后(即经过信号整形后)再送入DSPTMS320F2812的捕获单元CAPl。该捕捉单元有一个专用的2级深度FIF0堆栈.顶层堆栈由CAPI FIF0组成,底层由CAPlFBOT组成。测速分两次捕捉.第一次捕捉到引脚发生的指定变化时,捕获单元将捕捉所选用计数器的计数值并把该值写入FIF0堆栈的顶层寄存器.如果在第一次捕捉的值读取之前发生第二次捕捉.新的捕捉值会被送入底层寄存器。捕获单元捕捉到数值后.相应的中断标志位置1,如果没有屏蔽中断,则产生外围设备中断请求。响应中断,通过中断服务程序读取一对捕捉的数值。该捕捉值正好是被测信号一个周期的两次计数。根据这两次捕获值,计算标准时钟的周期数K,进而得出被测转速。 3.2 软件程序设计   由于采用DSP的事件管理器EVA的捕获单元CAPl,并选其定时器T1作为CAPl的时间基准,T1工作在连续递增计数模式,并设定捕获单元捕获被测信号的上升沿。捕获前要清中断标志位,开捕获中断。相应初始化事件管理器EVA的程序代码为:   进入捕获中断子程序时,保护现场首先清CAPl中断标志位,从二级深度FIF0中依次读取两次捕获的计数值capKl和capK2。如果capK2>capKl,则capK2一capKl即为在被测信号的一个周期内记的标准时钟的周期数K。若capK2capKl,则说明在计数过程中有计数溢出,即计数到周期寄存器T1PR内写入的OxFFFF后回零重新计数,因此K=capK2一capKl+0xFFFF。这里时基T1的频率为主频时钟除以分频系数,即f0=150 MHz/32,因此所测速度为n=60f0/(ZK)=1768 867.925/K。下面为捕获中断子程序代码: 4 结语   基于磁电式转速传感器和TMS320F2812 DSP的捕获单元实现的柴油发电机组转速数字控制器的转速测量系统,其硬件设计简单,测量精度较高。经实验测试,在机组转速80~1500 r/min时,测量误差均低于0.2%,完全满足柴油机发电机组转速测量和控制的要求,有较高的实际应用价值。

摩登3主管554258:_一文读懂流量传感器

  流量的准确测量非常地重要,利用流量传感器监测计量被测管路中的液体或气体流量,在工业控制和民用设施领域中被广泛地应用。 本文引用地址:http://www.eepw.com.cn/article/201710/366230.htm   流量传感器   流量是工业生产中一个重要参数。工业生产过程中,很多原料、半成品、成品都是以流体状态出现的。流体的流量就成了决定产品成分和质量的关键,也是生产成本核算和合理使用能源的重要依据。此外,为了保证制造业无故障检测及检测结果的可靠性,许多过程都需要液体或气体介质的流入和流出量保持一致,在自动化生产过程中除了压力和温度,流量的测量也非常的重要。因此流量的测量和控制是生产过程自动化的重要环节。   流量传感器是能感受流体流量并转换成可用输出信号的传感器,将传感器放在流体的通路中,由流体对传感器和传感器对流体的相互作用测出流量的变化。按照流量的定义,主要应用于气体和液体流量的检测。   流量传感器的分类:   流量传感器可按不同的检测方式,分为以下几种,且由相应的传感器执行工作:   电磁式检测方式:电磁流量传感器   机械式检测方式:   1.容积流量传感器   2.涡街流量传感器   3.涡轮流量传感器   声学式检测方式:超生波流量传感器   节流式检测方式:差压流量传感器   下面我们来说说以上各种传感器的不同之处:   一、 电磁流量传感器:   定义:电磁流量传感器是由直接接触管道介质的传感器和上端信号转换两部分构成。它是基于法拉第电磁感应定律工作的,用来测量电导率大于5μs/cm的导电液体的流量,是一种测量导电介质流量的仪表。除了可以测量一般导电液体的流量外,还可以用于测量强酸、强碱等强腐蚀性液体和均匀含有液固两项悬浮的液体,如泥浆、矿浆、纸浆等。   原理:电磁流量传感器的工作原理是基于法拉第电磁感应定律。在电磁流量传感器中,测量管内的导电介质相当于法拉第试验中的导电金属杆,上下两端的两个电磁线圈产生恒定电磁场当有导电介质流过时,则会产生感应电压。管道内部的两个电极测量产生的感应电压。测量管道通过不导电的内衬(橡胶,特氟龙等)实现与流体和测量电极的电磁隔离。   电液体在磁场中作切割磁力线运动时,导体中产生感应电势,感应电势E为:E=KBVD式中:K—仪表常数 B—磁感应强度 V—测量管道截面内的平均流速 D—测量管道截面的内径   感应电势大小与磁感应强度、管径大小、流体流速大小有关。即:   二、 容积式流量传感器   定义:容积式流量传感器又称定排量流量传感器,简称PD流量传感器,在流量仪表中精度最高的一类。它的机械测量元件把流体连续不断的分割成单个已知的体积部分,根据测量室逐次重复地充满和排放该体积部分流体的次数来测量流体体积总量。   原理:容积式流量测量是采用固定的小体积来反复计量通过流量传感器的流体体积。所以在容积式流量计传感器内部必须具有构成一个标准体积的空间,通过称其为容积式流量传感器的“计量空间”或“计量室”。这个空间由仪表壳的内壁和流量传感器转动部件一起构成。容积式流量传感器的工作原理为:流体通过流量传感器,就会在传感器进出口之间产生一定的压力差。流量传感器的转动部件(简称“转子”)在这个压力差作用下产生旋转,并将流量由入口排向出口。在这个过程中,流体一次次地充满流量传感器的“计量空间”,然后又不断的被送往出口。在给定流量传感器条件下,该计量空间的体积是确定的,只要测得转子的转动次数,就可以得到通过流量传感器的流体体积的累积值。   三、 涡街流量传感器   定义:涡街流量传感器是基于卡门涡街原理研制出来的。在流体中设置三角柱型旋涡发生体,则从旋涡发生体两侧交替地产生有规则的旋涡,这种旋涡称为卡门旋涡。   原理:在流体中安放一个非流线型旋涡发生体,使流体在发生体两侧交替地分离,释放出两串规则地交错排列的旋涡,且在一定范围内旋涡分离频率与流量成正比的流量传感器。通过测量旋涡的频率,根据相关公式就能计算出流体的流量。   四、 涡轮流量传感器   定义:涡轮流量传感器类似于叶轮式水表,是一种速度式流量传感器。将涡轮叶轮、螺旋桨等元件置于流体中,利用涡轮的速度与平均体积流量的速率成正比,螺旋桨转速与流体速度成正比的原理,构成的能量转换器件。   原理:涡轮流量传感器是在管道中安装一个可自由转动的叶轮,流体流过叶轮使叶轮旋转,流量越大,流速越高,则动能越大,叶轮转速也越高。测量出叶轮的转速或频率,就可确定流过管道的流体流量和总量。   特点:涡轮流量传感器是一种速度式仪表,它具有精度高,重复性好,结构简单,运动部件少,耐高压,测量范围宽,体积小,重量轻,压力损失小,维修方便等优点,用于封闭管道中测量低粘度气体的体积流量和总量。在石油,化工,冶金,城市天燃气管网等行业中具有广泛的使用价值。   五、 超声波流量传感器   定义:超声波流量传感器是使用压电材料镐钛酸铅晶体制成的,能将电能转换成声能的元件。是通过检测流体流动时对超声束(或超声脉冲)的作用,以测量体积流量的仪表。   原理:当超声波束在流体中传播时,流体的流动将会使传播时间发生微小的变化,并且传播时间的变化正比于液体的流速,由此就能测出流体的流速,在根据管道口径就能计算出流量大小。   特点:目前的工业流量测量普遍存在着大管径、大流量测量困难的问题,这是因为一般流量传感器随着测量管径的增大会带来制造和运输上的困难,造价提高、能损加大、安装不便这些缺点,它均可避免。因为各类超声波流量传感器均可管外安装、非接触测流,仪表造价基本上与被测管道口径大小无关,而其它类型的流量传感器随着口径增加,造价大幅度增加,故口径越大超声波流量传感器比相同功能其它类型流量传感器的功能价格比越优越。超声测量仪表的流量测量准确度几乎不受被测流体温度、压力、粘度、密度等参数的影响,又可制成非接触及便携式测量仪表,故可解决其它类型仪表所难以测量的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。   六、 差压流量传感器 定义:差压式流量传感器是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测与管道的几何尺寸来计算流量的仪表。   原理:充满管道的流体,当它流经管道内的节流件时,流速将在节流件处形成局部收缩,因而流速增加,静压力降低,于是在节流件前后便产生了压差。流量流量愈大,产生的压差愈大,这样可依据压差来衡量流量的大小。   随着流量传感器的不断发展,越来越多类型的流量传感器在逐步问世,他们各有各的优势也各有各的缺憾,用户在选取流量传感器的时候,应该根据自身的需要选择合适的传感器。

摩登3平台首页_现场总线在DCS系统中的集成设计是什么样的?

引言 本文引用地址:http://www.eepw.com.cn/article/201808/385800.htm 新的基于现场总线技术的控制策略和网络结构将对现有的仪表及控制系统产生革命性的影响。从现场总线技术的本质特征上分析了其对传统分散控制系统DCS的冲击,并结合dcs的网络结构特点,给出了现场总线集成于dcs的三种实现方法。 工业控制从早期的就地控制、集中控制,已经发展到现在的集散控制(dcs),在过去的20年中,过程工业对dcs系统及相关的仪表装置进行了大量的投入,dcs系统的应用结果得到了用户的肯定。4-20mA信号是dcs系统及现场设备相互连接的最本质特点,这是控制系统和仪表装置发展的一大进步。 然而现在,数字化和网络化成为当今控制网络发展的主要方向。人们意识到传统的模拟信号只能提供原始的测量和控制信息,而智能变送器在4-20mA信号之上附加信息的能力又受其低通信速率的制约,所以对整个过程控制系统的机制进行数字化和网络化,应是其发展的必然趋势。 现场总线在智能现场设备、自动化系统之间提供了一个全数字化的、双向的、多节点的通信链接。现场总线的出现促进了现场设备的数字化和网络化,并且使现场控制的功能更加强大。这一改进带来了过程控制系统的开放性,使系统成为具有测量、控制、执行和—过程诊断的综合能力的控制网络。 1、现场总线对传统dcs的冲击 现场总线对传统dcs的冲击来源于其本质上优越于dcs系统的技术特征。根据国际电工委员会IEC和现场总线基金会FF的定义,现场总线技术具有以下5个主要特点: ①数字信号完全取代4-20mA模拟信号; ②使基本过程控制、报警和计算功能等完全分布在现场完成; ③使设备增加非控制信息,如自诊断信息、组态信息以及补偿信息等; ④实现现场管理和控制的统一; ⑤真正实现系统开放性、互操作性。 现场总线技术不仅是一种通信技术,它实际上融人了智能化仪表、计算机网络和开放系统互连(OSI)等技术的精粹。所有这些特点使得以现场总线技术为基础的现场总线控制系统(FCS)相对于传统dcs系统具有巨大的优越性: ①系统结构大大简化,成本显著降低; ②现场设备自治性加强,系统性能全面提高; ③提高了信号传输的可靠性和精度; ④真正实现全分散、全数字化的控制网络; ⑤用户始终拥有系统集成权。 这些优越性可从dcs和现场总线系统的网络结构比较后得到验证。 2、现场总线集成于dcs系统是现阶段控制网络的发展趋势 尽管用户对控制系统的结构改进表示欢迎,但他们并不希望对他们现有的仪表系统做大的改动。 目前在现场总线的发展初期,大多数用户更倾向于对他们现有的仪表系统进行逐步的增添和替换;另一方面,dcs系统及其仪表的消失或完全被取代,对于费用或人力而言也都是不合理的。现阶段最可行的方案是考虑如何使现场总线与传统的dcs系统尽可能地协同工作,这种集成方案能够得到灵活的系统组态,以适用于更广泛的、富于实用价值的应用。 3、现场总线于dcs系统I/0总线上的集成 在dcs的结构体系中,自上而下大体可分为3层:管理层,监控操作层和I/O测控层。在I/O测控层的I/O总线上,挂有dcs控制器和各种I/O卡件,I/O卡件用于连接现场4-20mA设备、离散量或PIC等现场信号,dcs控制器负责现场控制。 在dcs系统的I/O总线上集成现场总线的关键是通过一个现场总线接口卡挂在dcs的I/O总线上,实现现场总线系统中的数据信息映射成原有dcs的 I /O总线上相对应的数据信息,如基本测量值、报警值或工艺设定值等,使得在dcs控制器所看到的现场总线来的信息就如同来自一个传统的dcs设备卡一样。这样便实现了在I/O总线上的现场总线技术集成。 这种方案主要可用于dcs系统已经安装并稳定运行,而现场总线首次引入系统的、规模较小的应用场合;此方案也可应用于PLC系统。 这种方案的优点是结构比较简单,缺点是集成规模受到现场总线接口卡的限制。 Fisher-Rosemount公司推出的dcs系统DeltaV采用的就是此种集成方案。DeltaV系统在它的I/O卡件中专门开发设计了此种功能的接口卡——现场总线H1通信模块(31.25kbit/s),成功地将现场总线技术集成在DeltaV系统中,可实现与现场总线仪表相连,极大地节省了安装、操作以及维护费用,同样的控制器可兼容H1与传统的I/O模块,有利于从传统的控制模。式向现场总线控制模式的过渡和转变。 在DeltaV系统的现场总线H1通信模块中具有特定的Driver,用以实现现场总线系统数据信息与I/O总线上对应信息的映射。 4、现场总线于dcs系统网络层的集成 除了在I/O总线上的集成方案,还可以在更高一层——dcs网络层上集成现场总线系统。在这种方案中,现场总线接口卡不是挂在dcs的I/O总线上,而是在dcs的上层LAN上。 在这种方案中,现场总线控制执行信息、测量以及现场仪表的控制功能均可在dcs操作站进行浏览并修改。它的优点是原来必须由dcs主计算机完成的一些控制和计算功能,现在可下放到现场仪表实现,并且可以在dcs操作员界面上得到相关的参数或数据信息;它的另一个优点是不需要对dcs控制站进行改动,对原有系统影响较小。 5、现场总线通过网关与dcs系统并行集成 若在一个工厂中并行运行着dcs系统和现场总线系统,则还可以通过一个网关来网接两者,安装网关以完成dcs系统与现场总线高速网络之间的信息传递。 在这一结构中,dcs系统的信息能够在新的操作员界面上得到并显示。通过使用抛网桥可以安装大量的H1低速总线。现场总线接口单元可提供控制协调、报警管理和短时趋势收集等功能。 现场总线与dcs的并行集成,完成整个工厂的控制系统和信息系统的集成统一,并可以通过Web服务器实现Infranet与Inernet的互连。这种方案的优点是丰富了网络的信息内容,便于发挥数据信息和控制信息的综合优势;另外,在这种集成方案中,现场总线系统与通过网关而集成在一起的dcs系统是相互独立的。 6、结论 综上所述,我们相信现场总线系统将广泛地应用到过程工业控制中,通过对过程控制系统进行一些必要的修改,将现场总线技术引入到dcs中,将会给用户带来大量的收益;另一方面,即使大多数的连续控制环路将由现场总线系统来完成,dcs系统仍将在许多诸如实时要求较高的控制场合扮演重要的角色。现阶段现场总线与dcs系统的共存将使用户拥有更多的选择,以实现更合理的控制系统。

摩登3平台注册登录_工业自动化应用的电路保护解决方案

最初的工业革命标志着从利用人力和畜力来制造向利用以水和蒸汽为动力的机器来制造的转变。能够将电力应用到大规模的商品生产这一发明,成就了第二次工业革命。第三次工业革命是利用计算机实现自动化生产过程的结果。第四次工业革命标志着从“哑巴”机器(装配线、独立的自动化喷漆机和电焊机等)到通过集成传感器和处理器—更重要的是,通过将它们连接在一起并通过工业物联网(IIoT)连接到操作中心而使之变得更智能和可自我配置的机器的转变。 本文引用地址:http://www.eepw.com.cn/article/201808/385162.htm 第四次工业革命有时被称为工业4.0,它的目标是使生产更加高效、更具成本效益和更灵活,并且能够在更短时间内为客户提供更好的产品。 然而,IIoT为工厂自动化系统带来的更多的连接功能,也使得这些系统特别容易遭受来自各种威胁的电气损坏。这些威胁包括通过数据和电源连接(工业以太网、PoE、CAN总线、RS-485、Profibus/现场总线等)传导的静电放电(ESD)、电快速瞬变脉冲群(EFT)、电缆放电事件(CDE)、雷电感应浪涌以及当大型电机启动或关闭时发生的系统感应电压瞬变等。 工业环境中设计和部署自动化系统的工程师需要了解适当的电路保护解决方案,如TVS二极管、TVS二极管阵列、气体放电管和SIDACtor保护晶闸管,以帮助减少(或消除)所涉及的风险。 本文概述了适用于各种工业自动化应用的电路保护解决方案,以及它们为确保未来工厂发展所需系统可靠性所提供的优势。 工业以太网 工业以太网(IE)将标准的以太网协议与坚固耐用的连接器和高温开关结合起来。工业应用中所用元器件必须能够承受极端的温度、湿度和振动—远远超过了在典型办公环境中安装的设备的参数范围。 工业以太网网络必须与当前和传统的系统交互操作,且必须提供可预测的性能和可维护性。除了物理兼容性和低级传输协议之外,实际的工业以太网系统还必须提供更高级别的OSI模型的互操作性。对于来自厂外的入侵和厂内不慎或未经授权的使用,工业网络都必须提供足够的安全性。 图1显示了一种适合在工厂自动化环境中使用的针对雷电感应瞬态、ESD、EFT、CDE和电源故障的室内远程数据线(非PoE)保护方法。 图1:一种针对雷电、ESD、EFT、CDE和电源故障的室内远程以太网数据线保护方法。所示的四条数据线(T x±和Rx±)被保护,可免受建筑物内部雷电瞬态电压的影响。LC03 TVS二极管阵列将大部分能量从变压器转移开,但是通过变压器互绕电容耦合的任何共模能量都通过SP3051 TVS二极管转移到GND。该元件可以连接到变压器PHY侧的地,因为变压器本身满足IEEE 802.3的隔离要求。 一些工业以太网电路保护应用提出了更大的挑战,例如在具有设备和电缆布置在户外的多栋建筑的设施中。图2所示的是在涉及频繁电暴的环境中,为这些应用而优化的电路保护方案。 图2:对于容易遭受超过当今硅技术限制的严重等级的雷电感应瞬态的应用,通常建议使用气体放电管(GDT)来保护变压器。GDT在数据对(而不是GND)之间连接,以符合IEEE 802.3标准的要求。如图所示,除了非常强大的保护元件(如两个LC03系列的TVS二极管阵列),在这里还额外使用了SL0902A90SM GDT,以抑制PHY的允通能量。F1-F4 TeleLink保险丝提供了针对电源故障的过流保护。 以太网供电 以太网供电(PoE)指的是将电力与以太网电缆上的数据一起传输的几种标准化或专用系统中的任何一种。它实现了采用单条电缆向各种设备(如IP监控摄像机)同时提供数据连接和电力。 与同样通过数据电缆为设备供电的USB总线不同,PoE可以延长电缆长度。电力传输可以在与传输数据相同的导线或同一电缆中的专用导线上实现。 在PoE方案中,接收电力的设备称为客户端设备或受电设备(PD),供电的设备是送电设备(PSE)。“模式A”电源通过10BaseT或100BaseTX接口的“有源”数据对供应。“模式B”电源被施加在10BaseT和100BaseT接口的未使用线对上。对于1000BaseT和10GbE应用,所有线对被用于数据传输,因此没有“备用对”。图3对PoE受电设备和电源设备的电路保护解决方案进行了说明。 图3:这里,正确额定的变压器和电源为IEEE 802.3合规性提供了所需的隔离。对于PSE,在提供电源的特定对上使用了TVS二极管。图中所示的是用于高暴露电缆和设备装置的1500W版本。对于雷电暴露不高的短电缆或装置,可以使用功率更低的600W或400W元件。为了保护PD,两个线对均需要进行保护,因为无法提前知道是哪一对提供电力。TVS二极管应根据预期的浪涌暴露水平进行选择。 CAN总线(DeviceNet) 工业以太网和PoE远不是工厂自动化系统协调所依赖的唯一通信总线。CAN(控制器局域网)总线标准使微控制器和设备在没有主计算机的应用中可以进行相互通信。虽然速度不如以太网快,但CAN总线却非常稳健,能够在比以太网更远的距离上实现可靠的数据传输。这使得它成为需要通信指令或从彼此相隔一定距离的单独设备返回数据的应用的很好选择。图4显示的是典型CAN总线应用的示例。Device-Net网络是以CAN总线技术为基础的。 图4:SM24CANB系列TVS二极管阵列旨在保护CAN总线和DeviceNet线路免受ESD、EFT和浪涌瞬态的损坏。它非常适合于较长的电缆或必须靠近电源电缆布设的线缆。 RS-485(Profibus、FieldBus) 与CAN总线一样,RS-485非常稳健,为工业用户提供了在较长距离内传输数据而不会衰减的能力,但是却比CAN总线更快。在工业环境中,它通常用于照明控制、安防摄像机和火灾探测系统。 图5针对容易遭受ESD或由雷电感应引起的低电平瞬态浪涌的RS-485端口给出了一种电路保护解决方案。图6展示了一种更高级别的保护方案。 图5:SM712系列TVS二极管阵列为RS-485端口针对低电平电气威胁提供了一种解决方案。 图6:在高暴露环境中的RS-485总线的电路保护示意图中,上图类似“Z”字形的符号可代表多种过压保护解决方案,包括Q2L系列SIDACtor保护晶闸管(图7)。 图7:小外形尺寸、小电路板占用空间的保护晶闸管(如Q2L系列SIDACtor)旨在保护高密度宽带设备免受破坏性过压瞬态的损坏。 【文章转载自网络,版权归原作者所有,若有侵权请联系删除】

摩登3注册网站_在轨道车辆制造中刀具管理系统和网络DNC系统的实践与应用

刀具管理系统和网络DNC系统在轨道车辆制造中有着重要的作用。 中车唐山机车车辆有限公司是轨道交通高端装备研制基地,主要产品有高速动车组、时速160km城际动车组、时速140km市域动车组、A型和B型地铁列车、70%和100%低地板现代有轨电车、中低速磁浮列车、安全快捷的25型系列客车等。这些列车的关键部件——列车走行部(即转向架)结构复杂、制造精度要求高。为此,唐山公司专门成立了转向架厂,负责转向架制造,该厂设备基本上全是数控设备,高精尖进口设备约占1/3,为了更好地利用设备、提升产品质量、增加生产效率,我们规划实施了刀具管理系统和网络DNC系统,刀具管理流程如图1所示。 本文引用地址:http://www.eepw.com.cn/article/201808/384810.htm 图1.刀具管理流程 系统采用北京兰光科技公司软件,实现了刀具管理和网络DNC两个系统有机结合;实现了刀具预警管理、快速查询和加工程序下载上传、机床监控等。下面对两个系统的功能进行介绍。 1. 刀具管理系统 该系统由基础配置、工艺管理、库房管理、后勤管理、审批管理、统计分析及系统维护等7部分组成(见图2)。 图2.刀具管理系统功能组成 通过刀具管理系统可以满足下列需求: (1) 库房管理方面需求。①刀具出入库:什么人借的什么刀、数量及借出\归还日期等。②刀具查找:根据刀具类别、规格及位置等快速查找所需要刀具。③刀具组装:是否有需要重新组装刀具,如果组装,是否有相应的构件。 (2)工艺准备方面需求。①刀具并行准备:根据工艺人员提供的生产用刀具清单,工具员“按需”准时备刀。②真实刀具查询:工艺人员编制加工工艺规程和加工程序时,能及时查询库存刀具,及时了解是否有合适的刀具,数量是多少。③切削专家库:每个刀具建立优化过的切削参数库,能够让工艺人员借鉴刀具最优参数。 (3)管理方面需求。①借出刀具管理:可随时查看每个工人借刀种类及数量、每台机床正在用刀种类及数量、逾期未还刀具提示等。②库存刀具分析:包括刀具库存、成本、预警、积压及报损等各类分析,确保库存最优。③流程审批:包括采购、报损等各类流程审批管理。④权限管理:不同人员具有不同权限,实现精确管理,并且每次操作都有日志,便于追溯管理。 2. 网络DNC系统 网络DNC主要包括机床数据通信模块、程序管理模块、监测采集模块及数据统计分析模块等,各个单元模块通过统一的数据平台,实现数控设备远程代码调用、生产文档快速协同及机床状态快速查看等功能。再向上层扩充到制造执行系统MES,实现作业计划管理、任务下达及产品追踪等功能,DNC网络总体架构如图3所示。 通过网络DNC系统通信模块和管理模块的实施,解决数控加工程序集中管理; 通过网络DNC系统采集模块和统计分析模块的实施,解决设备信息利用率统计;通过机床网络监测,根据DNC系统的自动采集功能,将生产任务信息的完成状况自动汇总,最终产生相应的数据报表,与MES系统相连,在新订单的签订和插单方面也将更加便捷;通过机床网络通信,机床操作人员在机床数控端就可以自动调用服务器上的加工程序,同时可以将重要的程序保存到服务器中,不必因为程序传输问题在机床和计算机间来回奔波,可节省大量的操作时间。机床只是作为一个终端,用于加工作业,每台数控设备均可以按要求调用所需的加工程序,即“按需分配”。 所有设备联网(包括网络布线)、远程通信、集中管理与控制,实现数控机床的完全网络化管理;建立数控程序库,实现对数控程序的统一管理,DNC系统根据生产订单选择下载相应的数控程序到数控设备上;DNC系统实时采集生产现场的生产进度数据、设备运行状态数据等,将车间的运行状态展示在系统中。 通过对数控机床联网、监控,实现NC程序的远程通信与科学管理和数据采集,从根本上对车间的信息化管理水平带来了质的变化。实现工厂的网络化管理,构建基于以太网的DNC网络,彻底改变以前数控机床的单机通信方式,全面实现机床的集中管理与控制。 程序管理更科学、规范、高效。提高NC程序的规范化管理水平,让编程员、操作员轻松地处理工作,完全符合企业ISO9000认证及管理的需求。产品状况实时性强、透明程度高,生产计划更科学、准确。 通过机床监控系统,可实时获知设备是开机中、空闲中还是故障中,以及正在生产产品的种类及数量,便于及时、准确制定和调整生产计划。提高机床利用率,减少机床辅助时间。DNC系统方便、可靠、全自动的程序传输功能,快速、高效的程序编辑功能,准确、直观的程序模拟仿真功能,加工程序、工艺文件的关联管理与快速查找功能,都可以将程序编辑、仿真、管理等生产辅助任务在计算机端快速高效地完成,可最大程度地提高机床的有效利用率。 (1)数控设备通信模块。操作者只需要在数控设备的控制面板上输入调用指令,即可完成程序的发送、接收和列表查询;可以实现多台机床的并行在线加工,支持断点续传,并可实现自动、手工、断电断点续传,有自动补包,缺损自动补齐,字符自动效验机制,确保传输到机床的程序准确无误;可将不同的设备类型、不同的控制系统以不同的接入方式同时接入统一的网络进行管理; 上传程序时, 服务器能够自动接收、自动保存数控程序,服务器端无需专人职守;实现加工程序远程列表浏览,操作者在机床端就可以浏览服务器上对应的文件列表,并可在列表中选择程序进行调用;具有强大的日志管理功能,可以记录整个系统的所有事件,提供复合查询检索方便问题的查找。可查看数据传输的日期、时间、文件名及上传还是下载等内容,用以记录操作过程及出错信息;可以自动备份通信参数,在移机或重装系统时,机床参数可智能恢复,机床加工程序界面如图4所示。 图5.机床程序管理界面 (2)程序管理模块。将所有加工程序交给服务器管理,解决加工程序的统一管理问题。可根据不同的人员、不同的产品赋予角色权限,并做到数据的安全管理;所有操作都被DNC系统记录在案,提供日志管理和最新版信息,解决数控机床加工程序版本问题;网络DNC管理模块提供了加工程序的目录式管理功能,可以对零件相应的图号、零件代号、对应的机床、用户名称及更改日期等信息进行管理;程序管理的进一步的发展是将本系统与上层信息化系统进行集成。程序管理界面如图5所示。 (3)设备生产信息采集及统计分析模块。可以以直观的电子看板形式在车间布局图上显示监控DNC网络上所有联网设备的运行状态,鉴别设备是处于运行还是停工状态;在机床具备相应条件下,DNC系统可实现开关机、程序起始\结束时间、主轴转速、进给、当前运行程序、主轴负载及报警等数据采集;能在设备布局图界面上显示设备的工作状态(等待、加工及停机),设备页面显示设备的运行日志、开机率及利用率。机床监控界面如图6所示,机床信息界面如图7所示。 图7.机床信息界面 通过转向架厂刀具管理系统和网络DNC项目实施,取得了明显效果,减少了加工程序出错率,提高了机床利用率。图8所示是转向架厂联网的加工中心。 图8.转向架常和DNC联网加工中心 下一步预计结合公司车体智能化项目,把网络DNC项目推广到铝合金厂实施。

摩登3注册网址_各种机床主轴故障的解决方法!学到就是赚到!

机床主轴指的是机床上带动工件或刀具旋转的轴。机床主轴通常由主轴、轴承和传动件(齿轮或带轮)等组成。实际应用中主要有两类高速主轴: 本文引用地址:http://www.eepw.com.cn/article/201808/384811.htm 一类是具有零传动的高速电主轴,这类主轴因采用电机和机床主轴一体化的结构,并经过精确的动平衡校正,因此具有良好的回转精度和稳定性,但对输出的扭矩和功率有所限制。 另一类是以变频主轴电机与机械变速机构相结合的主轴。这类主轴输出的扭矩和功率要大得多,但相对来说回转精度和平稳性要差一点,因此对于这类主轴来说,如何正确地设计机床主轴及其组件对机床加工精度的影响是至关重要的。 数控机床主轴常见的故障以及解决方法 一、不带变频的主轴不转 故障原因以及处理方法: ①机械传动故障引起:检查皮带传动有无断裂或机床是否挂了空挡。 ②供给主轴的三相电源缺相或反相:检查电源,调换任两条电源线。 ③电路连接错误:认真参阅电路连接手册, 确保连线正确。 ④系统无相应的主轴控制信号输出:用万用表测量系统信号输出端,若无主轴控制信号输出,则需更换相关IC元器件或送厂维修。 ⑤系统有相应的主轴控制信号输出,但电源供给线路及控制信号输出线路存在断路或是元器件损坏:用万用表检查系统与主轴电机之间的电源供给回路,信号控制回路是否存在断路; 是否存在断路;各连线间的触点是否接触不良;交流接触器,直流继电器是否有损坏;检查热继电器是否过流;检查保险管是否烧毁等。 二、带变频器的主轴不转 故障原因以及处理方法: ①机械传动故障引起:检查皮带传动有无断裂或机床是否挂了空挡。 ②供给主轴的三相电源缺相:检查电源,调换任两条电源线。 ③数控系统的变频器控制参数未打开:查阅系统说明书,了解变频参数并更改。 ④系统与变频器的线路连接错误:查阅系统与变频器的连线说明书,确保连线正确。 ⑤模拟电压输出不正常:用万用表检查系统输出的模拟电压是否正常;检查模拟电压信号线连接是否正确或接触不良,变频器接收的模拟电压是否匹配。 ⑥强电控制部分断路或元器件损坏:检查主轴供电这一线路各触点连接是否可靠,线路有否 断路,直流继电器是否损坏,保险管是否烧坏。 ⑦变频器参数未调好:变频器内含有控制方式选择,分为变频器面板控制主轴方式,NC系统控制主轴方式等,若不选择NC系统控制方式, 则无法用系统控制主轴,修改这一参数;检查相关参数设置是否合理。 三、不带变频的主轴(换档主轴)转速不受控 故障原因处理方法: ①系统无S01- S04的控制信号输出:检查系统有无换档控制信号输出。若无,则为系统故障,更换IC或送厂维修。 ②连接线路故障:若系统有换档控制信号输出,则检查各连接线路是否存在断路或接触不良, 检查直流继电器或交流接触器是否损坏。 ③主轴电机损坏或短路:检查主轴电机。 ④机械未挂档:挂好档位。 四、主轴无制动 故障原因处理方法: ①制动电路异常或强电元器件损坏:检查桥堆,熔断器,交流接触器是否损坏;检查强电回路是否断路。 ②制动时间不够长:调整系统或变频器的制动时间参数。 ③系统无制动信号输出:更换内部元器件或送厂维修。 ④变频器控制参数未调好:查阅变频器使用说明书,正确设置变频器参数。 五、主轴启动后立即停止 故障原因处理方法 ①系统输出脉冲时间不够:调整系统的M代码输出时间。 ②变频器处于点动状态:参阅变频器的使用说明书,设置好参数。 ③主轴线路的控制元器件损坏:检查电路上的各触点接触是否良好,检查直流继电器 交流 接触器是否损坏, 造成触头不自锁 ④主轴电机短路,造成热继电器保护:查找短路原因,使热继电器复位。 ⑤主轴控制回路没有带自锁电路, 而把参数设置为脉冲信号输出, 使主轴不能正常运转:将系统控制主轴的启停参数改为电平控制方式。 六、主轴转动不能停止 故障原因处理方法: ①交流接触器或直流继电器损坏,长时间吸合,无法控制:更换交流接触器或直流继电器。