分类目录:摩登3官网注册

摩登3登录_光固化3D打印快速成型技术

引 言 SLA 是 Stereo Lithography Apparatus 的缩写,即立体光固化成型法。SLA 3D 打印快速成型技术是一种以数字模型为基础,以液态光敏树脂为材料,通过逐层打印的方式来构造物体的技术。随着社会的不断进步,光固化快速 3D 打印技术在人类发展中愈加重要,其重要性可与电脑相媲美。快速3D 打印技术不需要在工厂进行操作,意味着无需机械加工或者任何模具,此举不仅提高了生产效率还降低了生产成本,在3D 打印的基础上,SLA 光固化成型技术对其做出了更进一步的改善,成为现代技术的发展趋势。 1 光固化 3D打印技术立体光固化成型技术简介 光固化 3D 打印技术立体光固化成型法利用激光照射光敏树脂材料,使液态树脂快速凝固成型,具备高精度、高成型质量的特点,可以加工一些结构外形比较复杂或使用传统手段难于成型的一些原型和模具。如今 3D 打印存在的问题是速度不快,费时且耗材,而 SLA 光固化成形 3D 打印技术可以更为直观的了解产品形态。 SLA 光固化成形 3D 打印技术已普遍存在,其优势显而易见,如打印精度较高、复杂零件制作方便、节省产品开发周期、人工费用降低、少量多品种需求优势明显等。虽然受打印设备、打印耗材及技术方面的制约,打印出来的产品在精度和力学性能方面还不能完全替代传统的制造业,但可与传统制造业形成互补。目前国内外厂商正在研发收缩小、固化快、强度高的光敏材料,也正是这些因素,使 SLA 光固化成形 3D 打印机在国内的普及越来越快。 研究的目的是探索光固化高精度 3D 打印技术 SLA 的原理,深入了解 SLA 技术,最后熟练使用SLA 技术打印我们理想的模型。 2 光固化 3D打印技术立体光固化成型技术原理 在液槽中充满液态光敏树脂,其在激光器所发射的紫外激光束照射下会快速固化。在成型开始时,可升降工作台处于液面以下,为一个截面层厚的高度。通过透镜聚焦后的激光束,按照机器指令将截面轮廓沿液面进行扫描。扫描区域的树脂快速固化,从而完成一层截面加工过程,得到一层塑料薄片。然后工作台下降一层截面层厚的高度,再固化另一层截面。这样层层叠加即可建构三维实体。打印原理如图 1 所示。 图1 打印原理图 3 光固化 3D打印快速成型的应用 在铸造行业,光固化 3D 打印快速成型可以快速、低成本的制作压蜡模具,制作树脂熔模以替代蜡型。在砂型铸造中用树脂模具代替木模,可有效提升复杂、薄壁、曲面等结构铸件的质量和成型效率。在工程设计业,用于测试模型制作。 在医学方面,可用于三维人体及器官复制,假体的制作、复杂外科手术的术前规划模拟、牙齿种植导板制作。光固化 3D 打印快速成型技术为快速铸造、小批量铸造、复杂件铸造等问题提供了有效的解决方法。 4 目前 SLA 3D打印装置的问题和解决 4.1 SLA3D打印装置面临的问题 随着科学技术的发展,基于SLA 的 3D 打印机设备功能越来越强大,但现有的 SLA 原理的 3D 打印机(激光快速成型机)外形结构比较大,一般左右两部分呈对称结构,左边为加工成型部分,右边为显示控制及电气控制柜部分,设备整体结构较大,内部空间利用率低,外形占地面积大,很小的机型也需要较大空间摆放,为设备的包装、运输带来困难,成本增加,且由于现有设备的长宽尺寸超出常规的房间门宽尺寸, 需要破坏墙体或者改门,造型亦不美观。因此,如何设计一种基于SLA 的多功能光固化 3D 打印装置,成为我们当前要解决的问题。 4.2 解决方法 针对目前存在的问题,提出一种实用新型基于SLA 的多功能光固化 3D 打印装置。该种基于SLA 的多功能光固化 3D 打印装置,设备主体成单体结构状,将LCD 触摸控制面板独立设置,方便控制和操作,将扫描装置置于树脂槽上,大幅度减小设备主体的外部尺寸,设备占地空间减小,设备制造加工成本大幅度降低,也便于包装和运输,以及便捷维护,而可扫描装置的扫描面积变大,满足了客户对大尺寸工件打印的要求,且设备运行稳定,快速成型和制造系统缩短了产品开发流程,相较于传统工艺流程节省了大量时间和资金。 5 结 语 SLA 光固化成形 3D 打印技术已进入各行各业,在时代的发展中其重要性愈加凸显,可以大胆的想象,在未来,我们将不再需要大规模的生产线,不再需要寸步不离的守候在机床旁,不再需要大量的人力物力,不再产生大量的工业废物。3D 打印技术将从根本上改变传统制造业模式,将设计领域提高到一个新的高度。

摩登3注册网站_视频中目标检测与跟踪算法综述

引 言 在视频中人或运动物体行为理解的整个流程中,运动目标的检测与跟踪非常关键。通常一个视频监控系统大体可分解为四个不同的功能单元,即目标检测,搜索系统感兴趣的目标区域 ;目标跟踪,捕获感兴趣区域的运动轨迹 ;目标分类, 将被跟踪目标分为人,汽车或其他移动物体 ;目标行为识别, 对跟踪目标进行行为识别。目标检测作为视频监控的前提, 属于低层次的视觉问题,目前己有多种较为成熟的算法。而目标跟踪作为视频监控最基本的功能属于中等层次的视觉问题, 是当前制约视频监控系统性能的主要瓶颈之一。 1 主流的目标检测方法介绍 1.1 背景分割法 背景分割法适用于运动场景固定且比较简单的场合,通过建立背景模型,用图像序列的特征参数与背景模型比较, 分割出背景和前景,从而得到运动对象。背景差分图像的主要原理是通过现有图像对比已知背景图像,且背景图像中不含任何感兴趣的对象,是背景模型 [1]。该对比过程被称为前景检测。该过程将观测图像分为两个互补的像素集合,可覆盖全部图像,包括感兴趣的运动对象及前景与前景的补集,即背景。 背景减除法最大的缺陷是,没有成熟和高性能的规则来定义前景区域和对象,因此其使用范围受限。有许多背景减除算法是针对特定需求提出来的,因此对模型和分割策略也提出了特殊要求。如文献 [2],它必须适用于平缓或快速的光照变化,场景运动变化,复杂的背景或背景变化。由于部分场合要求由硬件承担背景减除功能,因此算法负载成为最基本的要求。对于户外视频监控系统而言,算法对噪声的鲁棒性以及算法对光照变化的适应能力是最基本的要求。 1.2 相邻帧间差分法 该方法选择相邻的两帧进行比对,选择参数可以是直方图,也可以是亮度或其他图像的特征参数,两个相邻的图像帧 进行减法运算,结果的矩阵值与预设的阈值进行比较,通过 差的绝对值与阈值大小来判断是否有运动。在这个原理的框 架下有更多的改进算法被提出,比如基于亮度假设检验和高 阶统计量的相邻帧差法等 [3]。 帧间差分法的优点在于可以很好地适用于存在多个运动 物体,或者当摄像机移动的情况。但是该方法对噪音干扰的 鲁棒性较差。 1.3 光流法 光流法(Optical Flow or Optic Flow)通过检测图像像素 点的强度随时间的变化情况来推断物体的移动速度及方向。 对于每个像素点,每一个时刻均有一个二维或多维的向量集 合,如(x,y,t),表示指定坐标在 t 点的瞬时速度。设 I(x,y, t)为 t 时刻(x,y)点的强度,在很短的时间Δt 内,x,y 分别 增加Δx,Δy,则光流变化的情况如公式(1)所示: 1.4 统计法 统计法通过建立统计模型来区分前景和后景。在魏波 [4] 的文章中,场景的统计,前景和后景的分布情况统计被作为基 础,建立了间断点的分布模型,此模型被用来实现运动目标 的检测。王长安,朱善安 [5] 在其论文中提出了改进的 GVF- Snake 模型与统计模型融合的算法思想,实验表明,融合后的 方法结合了 GVF-Snake 与统计模型的各自优点,对静态背景 的目标检测有很好的效果。各种文献资料都表明,统计法适 合在复杂场景中检测运动对象,且算法的时间复杂度低,易 于硬件实现,但由于检测效果受先验知识的影响,统计法的 准确度并不高。 1.5 小波法 数学界有一种公认的提法,即小波分析是近代数学的一项重要成就,它已经发展成为一个新的数学分支,是多学科结合的产物,包括泛函数值计算、Fourier变换等,是一种多尺度,多分辨的分析技术,在信息融合、语音处理、信号处理、大气模型、地震预测等诸多领域都有着广泛的使用价值,在目标检测方面亦有广阔的应用。在李红艳[6] 的文献中, Haar 小波变换的低Signal-to-Noise微小目标检测方法被提出, 仿真实验结果表明,李红艳提出的方法可以有效提高目标的Signal-to-Noise。小波分析的优势在于检测复杂场景下的微弱目标,但大规模成熟应用的情况还比较少。 2 主流的目标检测方法性能比较 几种典型目标检测方法的性能比较情况见表 1 所列 [7-10]。 3 主流的目标跟踪方法介绍 目标跟踪是机器视觉的关键功能步骤,在机器视觉的所有应用领域,如视频监控,视频压缩,人机交互,医学图像处理等领域都是极具挑战性的课题。目标跟踪除要在图像序列中检测出目标外,还需要获取目标的位置、速度、运动轨迹、加速度等运动参数,从而为下一步运动目标的行为识别与理解提供技术参数。经过多年的发展,出现了许多目标跟踪的方法,这些方法都各自有其优缺点。 3.1 基于特征匹配的跟踪方法 运动目标总会有一些区别于其他事物的属性,如几何形状, 外形轮廓,子空间特征等属性,这些属性具有可靠性,独立性, 稀疏性和可区分性等特点,可被用作目标跟踪的依据。特征点提取是该算法的关键,目前常用的特征点提取算法有SIFT算法,Kanade Lucas Tomasi(KLT)算法,Harris 算法及 SURF 算法等。 3.2 基于贝叶斯的跟踪方法 在文献 [11] 中,二阶 AR 模型被用来跟踪目标运动,一 阶 AR 模型被用来跟踪目标尺度变化,理论推导和仿真实验显 示,一阶、二阶融合的方法取得了较好的跟踪效果。在贝叶 斯跟踪方法中,Kalman 滤波(KF)是最早被成熟应用的方法, KF 具有准确预测平稳运动目标下一个时间点位置的特性,因 此在弹道目标跟踪中有成熟的产品应用。但 KF 的缺陷是只能 处理线性高斯模型,虽然 KF 有各种改进模型,但都不能处理 非高斯非线性模型。 3.3 基于动态轮廓的跟踪方法  动态轮廓跟踪方法的主要原理是先勾勒出运动目标的轮 廓,由后续帧不断更新轮廓进而达到跟踪的目的。文献…

摩登3官网注册_基于php的产品售后服务管理系统设计与实现

引 言 我公司已建立起一套比较完整的售后服务体系,并能正常运行。由于现有系统均需手工填写、手工传递,导致分散保存,使系统存在易造成信息填写不规范;不便于查询、统计和分析;返修产品可追踪性差;信息交换不及时;信息共享不方便; 相同信息需要重复填写,工作量大,工作效率不高等不足。 为了弥补这些不足,为用户提供更好的售后服务,我们建立了基于网络的产品售后服务管理信息系统。该系统不仅可以弥补我公司在管理、设计、生产制造过程中的不足,尽可能减少用户的损失,提高用户的满意度,为用户提供良好的售后服务,还可以使我公司及时、准确地了解产品质量状况,为持续改进、不断完善产品质量体系提供依据。 1 开发语言及平台的选择 php 是一种在服务器端执行的嵌入HTML 文档的脚本语言,它具有高性能、低成本、跨平台性强等优点;MySQL 是一个小型关系型数据库管理系统,它具有高性能、可移植性强、开放源码、易于配置等优点;Apache 是目前应用最广的服务器软件, 可以在多个操作系统中使用。而使用Apache+php+MySQL 组合的优点就是他们可以在任何主流操作系统和其它操作系统中使用。以上均为开放代码的免费软件,大大降低了系统开发的成本。本平台运行的操作系统为Windows Server 2003。 2 系统总体设计 由于此平台是建立在企业的内网平台上,从系统集成性及使用简便的角度出发,系统采用浏览器 / 服务器(B/S)结构。 3 功能需求及设计 经过与售后人员的交流,做了详细的需求分析,系统应实现以下功能: (1) 用户管理及权限分配 :系统分为管理员、检修记录员和报表查询人员,所有用户均采用实名制; (2) 更改密码:用户在自己的登录界面可自由更改密码。在修改密码时应先输入旧密码,然后再输入新密码并确认, 旧密码错误或两次输入的新密码不一致,系统均会做出错误信息提示; (3) 开箱单登记 :对于返厂维修的产品,需要对产品故障情况和客户信息等进行记录; (4) 维修记录单:记录故障产品的维修过程,并将开箱单信息自动填入维修单,以方便记录维修过程; (5) 发货登记单:将维修完的产品返回给客户,形成完整的维修流程闭环; (6) 自定义查询功能 :可以对开箱单、发货单进行查询, 并对产品维修单按字段查询,查询结果可根据不同需求输出网页格式或方便编辑的Excel格式。 3.1 数据库设计 系统需要使用的数据库表如下所示: (1)故障表(sale_fault):存放故障原因及处理情况 ; (2)故障记录表(sale_record):存放开箱登记单及维修 记录单相关信息 ; (3)内容表(sale_repairoutlist):存放发货产品的信息 ; (4)发货登记单表(sale_repairout):存放发货日期、运 单号等信息 ; (5)用户类型表(usertype):存放用户类型信息 ; (6)故障产品信息登记表(sale_equipment):存放故障 产品序列号、图号等产品信息。 3.2 主要功能实现的技术难点及解决办法 (1) 开箱登记单多条记录录入问题。客户返厂的故障产品一箱装有多个,为减少重复信息,且在查询结果中直观体现出一个开箱单中的所有故障产品列表,要求在开箱单录入界面可动态增加多个故障产品信息,查询时根据开箱单号合并显示。因此在数据库中建立故障记录表(sale_record),设置开箱登记单号字段(开箱单号按照年号 + 产品系列标识+ 流水号自动产生)。当开箱单中需要记录一条以上产品故障信息时, 通过循环语句先在故障记录表(sale_record)中插入故障信息后,得到该表主键,并将该主键和产品型号、图号、序列号等信息插入到故障产品信息登记表(sale_equipment)中,使两个表通过共同字段关联起来,达到录入时一次录入,查询时根据开箱单号合并显示的目的。 (2) 为了在维修结果中体现产品发给客户的时间,需要在维修记录中记录发货日期,将维修记录与发货信息联系起来。因此在数据库中设置两个表,分别为维修记录表(sale_ repairoutlist)和发货记录表(sale_repairout)。由于在维修和发货时需要记录产品图号及机器号信息,因此在维护维修记录单界面通过查询两个表中的关联字段,将发货信息同时显示, 由此得到准确的维修记录表和发货日期。 (3) 报表查询功能。为了更好的对产品故障进行分析统计,持续改进,为不断完善产品质量体系提供依据,系统提供了多种查询方式。如产品履历查询:输入产品图号和序列号, 可查询到该产品的所有维修记录;出厂产品修理报表:可按时间、型号、序列号分别查询满足售后部门需求的个性化报表,并以 Excel形式输出;对返厂维修的产品,可对未填写维修单的故障产品进行查询和统计;将开箱登记单及维修记录单中的各字段进行随意组合以查询统计。 4 结 语 该系统已在售后部门实际应用,具有简单实用,操作方便等优点,完全满足售后部门的要求,达到了预期效果。

摩登3注册开户_基于STM32F107的智能种植系统的设计

引 言 随着我国社会经济的迅速发展与城镇化加剧,室内种植绿色植物,净化空气质量已逐渐成为主流的生活习惯。根据数据调查表明,到 2015 年末,城镇人口占总人口比重达到 56.1%,有种植室内植物意愿的家庭主妇、退休老人以及愿意尝试追求新事物的年轻人,占城镇化人口的 9.8%,约为8000 万人。雾霾出现的频次和问题加剧,因此空气逐渐成为影响生活质量的重要指标,人们对室内环境的质量要求越来越高。而基于以上问题,本文设计了智能种植装置,该装置集智能种植、社交功能、专业服务于一身,可为各类城市用户的多样化需求提供相应服务,净化室内空气,增加室内种植的趣味性和娱乐性。该装置以STM32F107 为主控芯片,利用CC2530搭建无线传感网,通过手机安卓界面实现对植物温湿度、光照强度、施水施肥的控制。智能种植装置的专家系统则根据用户种植的植物,为用户提供专业的种植方案,根据植物的生长情况实现好友排名,增加人机互动的趣味性。用户通过点触手机,即可实现对植物的智能控制,并根据用户需求定制相应的种植方案。该系统不仅能够使忙碌的都市人利用碎片时间实现植物管理,增添生活乐趣,还能根据用户的种植喜好为用户建立社群,为其提供有趣、便捷的社交平台。 1 智能种植系统的硬件设计 智能种植系统的硬件结构如图 1 所示。智能种植装置的硬件结构主要分为传感器系统、控制系统、电源系统、主控芯片、服务器以及个人手机和 PC 端。智能装置工作的原理传感器系统采集植物的生长及环境信息,通过CC2530 将信息传 智能种植装置的传感器系统包括温度传感器、湿度传感器、光照传感器、二氧化碳传感器等。各传感器采集不同的 温度传感器采用 DS18B20, 具有体积小, 硬件开销低,抗干扰能力强,精度高等特点。智能种植装置主要通过DS18B20 采集种植植物生长环境的温度,并将采集到的温度AD 值通过CC2530 传输至主控芯片。 湿度传感器模块采用土壤湿度传感器模块,该模块的数字量输出引脚可以与单片机直接相连,通过单片机检测高低电平,由此检测土壤湿度。小板模拟量输出引脚可以和 AD 模块相连,通过AD 转换获得土壤湿度更精确的数值。智能种植装置主要通过湿度采集种植植物生长土壤的湿度,并将采集到的湿度AD 值通过CC2530 传输至主控芯片。 光照传感器具有I2C 总线接口(f/s 模式支持),光谱范围与人眼相近,照度数字转换器,50 Hz/60 Hz 光噪声,光源的依赖性不大,可调光学窗口测量结果的影响,小测变异(+/ - 20%),红外线影响较小。智能种植装置主要通过光照传感器采集种植植物生长环境的光照度,并将采集到的光照度AD 值通过CC2530 传输至主控芯片。 二氧化碳传感器具有以下特点:具有信号输出指示、双路信号输出(模拟量输出及 TTL 电平输出)、TTL 输出有效信号为低电平、模拟量输出 30 ~50 mV 电压,浓度越高则电压越高,对二氧化碳具有很高的灵敏度和良好的选择性及较长的使用寿命和可靠的稳定性、快速的响应恢复特性。智能种植装置主要通过二氧化碳传感器采集种植植物生长期间二氧化碳的吞吐量,并将采集到的二氧化碳AD 值通过 CC2530 传输至主控芯片。二氧化碳的吞吐量是判断植物生长健康的重要依据,因此二氧化碳传感器也是实现植物生长好友排名的重要传感器。 1.2 控制系统 智能种植装置的控制结构如图 2 所示。控制系统包括温度调节系统,湿度调节系统,施水施肥系统与光照调节系统。控制系统连接传感器和智能装置。主控芯片接收手机或PC 端传送过来的信号,控制系统的实现主要利用控制节点、继电器扩展模块和相应的机电执行器,通过继电器实现水肥、温湿度的调节。当植物缺水时,湿度传感器采集植物生长环境的湿度AD值,通过无线传感网传送至主控芯片,主控芯片将AD 值与专家系统中的数据库湿度AD 值进行对比,若判断湿度不足,则通过无线传感网驱动继电器施水。其他传感器类似。 1.3 主控模块 主控模块采用STM32F107 芯片,该芯片的标准外设包括10 个定时器、两个 12 位 1 M sample/s AD(模数转换器,快速交替模式下为 2 M sample/s)、两个 12 位DA(数模转换器)、两个I2C 接口、五个 USART 接口,三个 SPI 端口和高质量数字音频接口I2S。此外,STM32F107 还拥有全速 USB(OTG) 接口,两路 CAN2.0B 接口及以太网 10/100 MAC 模块。此芯片可以满足工业、医疗、楼宇自动化、家庭音响和家电市场多种产品的需求。 基于STM32F107上述特点,本装置采用STM32F107作为主控芯片,负责处理 CC2530传输的数据,并将无线传感网的数据与专家系统中的标准值进行对比判断,做相应处理,之后将处理好的数据上传至服务器或云端。主控芯片通过数据平台控制系统负责对采集到的数据进行存储、信息处理和信息命令的下达,为用户提供分析和决策以及社交依据,用户随时随地通过手机和电脑进行实时查询和控制。 1.4 用户控制模块 用户控制模块主要采用手机或电脑实现,用户通过手机登录服务器查询或修改服务器或云端的数据,达到控制智能种植装置的目的, 具体使用ZigBee 协议,TC/IP 协议以及Socket 通信等实现。 2 智能种植系统的软件设计 智能种植系统的软件设计如图 3 所示。智能种植装置的软件部分主要通过传感器采集数据,经过 CC2530 传输,使STM32F107 接收到数据并与标准数据对比后,判断植物环境指标是否符合健康标准,根据具体情况做相应处理。如采集光照,将现有光照值与光照健康标准库对比,如果现有值比库中值强则减少光照;反之,增加光照。 3 结 语 本设计通过手机实现了集社交、种植方案、自动种植为一身的智能种植装置。该装置以STM32F107 为主控芯片,利用手机安卓界面实现对植物温湿度、光照强度、施水施肥的

摩登3平台首页_智能家居通信技术研究综述

引 言 智能家居是一种居住环境,其基础是住宅,其目的是构建高效的住宅与家庭日程管理系统,其手段是利用网络、布线、音频、自控、安全等一系列技术将家居生活有关的设施集成。 作为一个新兴产业,智能家居还未真正进入成长期,市场消费观念还未形成,但随着智能家居市场推广普及的进一步落实,在消费者的观念形成后,智能家居市场未来拥有无穷潜力,产业前途无量。正因为如此,越来越多的智能家居生产企业开始投入对行业市场的研究,特别是对企业成长环境和消费者需求变化的深入研究。随着科学技术日新月异的发展, 数据通信技术迅速向智能家居渗透。居住环境信息获取和传输技术需要运用适宜的现代通讯手段来实现。按通信技术传输介质的不同可分为有线和无线两种方式。有线通信方式具有系统可靠性高、抗干扰能力强等优点。但传感器与执行机构数量多且分散,导致布线复杂、维护困难。无线通信以组网灵活、无需布线等优点在智能家居中逐渐兴起。智能家居中常见的有线方式有电力载波和以太网等,无线方式则包括ZigBee、WiFi、GSM/GPRS、无线射频技术等,本文对这些通信技术在智能家居领域中的应用进行了综述。 1 有线通信方式 有线通信方式具有稳定、安全和高速等优点,但存在设备移动性差和布线繁琐、布线成本高等不足。常用的有线通信方式有电力载波和以太网等。 1.1 电力载波通信 电力线载波(Power Line Carrier,PLC)是电力系统特有的通信方式,电力线载波通讯是指利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。其最大特点是不需要重新架设网络,只要有电线就能进行数据传递。 马乐等(2013)[1]设计了基于物联网体系的智能家居系统,以 Internet 和GSM 为远程控制基础,以 RF 无线射频技术为近程控制手段,以 PLC 为通讯总线,解决家庭内部点对点高速多媒体数据传输的问题。罗玉平等(2014)[2]设计了基于电力线载波通信的智能家居控制系统,系统以STM32 主控制器为核心,内嵌Web 服务器,结合 GPRS 网络、电力载波通信技术以及传感器技术可实现远程智能控制。宣航(2015)[3]开发了基于物联网的智能家居监控系统,该系统基于电力线载波通信技术,以TOP6410 开发板为核心,以OFDM 调制技术为基础构建了智能家居系统的硬件体系结构和软件平台。 1.2 以太网 以太网(Ethernet)首次由罗伯特 • 梅特卡夫和施乐公司帕洛阿尔托研究中心的同事研制,如今已成为最流行的通信协议标准。以太网可以分为标准以太网、快速以太网、千兆以太网以及万兆以太网。 南春辉等(2013)[4]设计了基于Web 技术的嵌入式智能家居系统,通过构建Web 服务器对家居设备的工作状态进行记录和控制,内部家居通过以太网相连,以Socket 协议与服务器通信。陈玮等(2015)[5]设计了基于Andriod 平台的智能家居系统,将云计算中心与路由器用以太网连接,使用内外网通信方式,当家庭宽带不可用时仍能通过内网实现对家居设备的控制。侯维岩等(2015)[6]设计并实现了智能家居网关及其 Web 控制软件,提出了一种能够同时兼容 ZigBee、Bluetooth 和以太网,并能方便操作的B/S 智能家居控制系统。 1.3 RS-485总线 RS-485 是串行数据接口标准,1983 年在RS-422 基础上制定了 RS-485 标准,增加了多点、双向通信能力,即允许多个发送器连接到同一条总线上,同时增加了发送器的驱动能力和冲突保护特性,扩展了总线共模范围,后命名为TIA/EIA- 485-A 标准。 陶莉等(2007)[7]设计了基于RS-485总线的智能家居系统,采用RS-485总线的主从网络实现了以 PC机为家庭网关的基于RS-485总线的智能家居系统。徐锋等(2009)[8]设计了智能家居远程控制系统,以 ARMLPC2364为核心,由MAX3088 构成 RS-485接口,不仅可以节省开支,其省电节耗效果也十分明显。刘璟(2010)[9]设计了基于PXA270-Linux 的智能家居系统,通过运用RS-485总线接入各种传感器模块的思想, 实现了家居安全报警、家用电器及照明系统远程控制。张小贝等(2012)[10]设计了基于嵌入式控制和RS-485的智能家居系统,具有良好的应用性。张玲(2014)[11]设计了基于STM32的智能家居系统,各智能产品通过 RS-485总线方式和控制器通讯, 具有控制方式多样灵活、模块功能可扩展性强、设备操作简单易行等优点。 RS-485 接口具有良好的抗干扰性,按其接口组成的半双工网络一般只需两根连线,长的传输距离和多站能力等使其成为首选的串行接口,但 RS-485 总线的主从和半双工工作方式难以实现各节点之间的数据交换,且存在效率低、实时性差等问题。 2 无线通信方式 与有线通信方式相比,无线通信网络是一种以数据为中心的自组织无线网络,具有可快速临时组网、拓扑结构可动态变化、抗毁性强、无需架设网络基础设施等优点。常用的无线通信方式有ZigBee、WiFi、GSM/GPRS、无线射频技术等。 2.1 ZigBee技术 ZigBee 类似于蓝牙,是一种新生的短距离通信技术。与蓝牙高昂的价格,组网复杂等特点不同,ZigBee 成本低、功耗低,且组网方便,因此许多厂商都对其感兴趣。ZigBee 遵循IEEE 802.15.4 标准,工作在 204 GHz 的频段上。 运用这种技术将智能家居中的各种电子设备组成一个无线传感网络,从而快捷方便地对居住环境参数进行自动监测, 意义重大。辛海亮等(2013)[12]设计了一种基于 ZigBee 的物联网智能家居控制系统的总体方案,以 Linux 系统为核心,以ZigBee 无线通信技术进行信号传输并以GPRS 通信技术进行系统远程监控。高鹏等(2014)[13]设计了基于ARM 和ZigBee的智能家居监控网络,在家庭内部通过基于德州仪器 CC2530 无线收发芯片的ZigBee 无线网络将家用电器与其他监控设备连接在一起组成无线家庭网络。庞泳等(2014)[14]设计了基于ZigBee 的智能家居改进系统,通过改进的MAC 协议与ZigBee数据帧结合,对网内不同数据类型采取针对性处理措施,使系统具有较低的功耗和较高的安全性。季建华(2015)[15]设计并实现了基于物联网的智能家居远程监控系统,同时又以JN5139 芯片为核心设计了各ZigBee 终端节点,采用星型网络实现 ZigBee 无线组网。Chatura 等(2016)[16]基于ZigBee 设计了低复杂度展频智能家居网络体系,提升了共存能力,增强了多径衰落影响下的鲁棒性。Raafat 等(2016)[17]基于ZigBee面向残疾人设计了可配置的智能家居控制系统,结果表明, 该系统可为残疾人提供更好、更便捷的生活方式。孙正凤等(2016)[18]设计了基于改进ZigBee 路由算法的智能家居控制系统,仿真表明,当节点数越多,改进的算法可减少 30% 的能耗, 并且随时间的增长,死亡节点数将降低 10%,有效均衡了网络负载。 应用ZigBee 技术可通过无线传输方式实现每个节点家居环境控制器与管控计算机的组网及灵活的网络数据传输,提高了智能家居系统的灵活性和可靠性,并大幅降低了成本。 2.2 无线WiFi技术 WiFi(Wireless Fidelity) 网络符合 IEEE/802.11b 协议, 由AP(Access Point)和无线网卡组成,组网方式较为简单, 具有无线接入、高速传输以及传输距离远等优点。 董思乔等(2015)[19]设计了基于 WiFi…

摩登3娱乐登录地址_基于ZigBee和STC单片机的无线数据采集系统

0 引 言 在工业信息化领域,数据采集是获取信息的基本手段。企业在生产时需要监测产量、工作电压、温度等信息,并将这些现场数据传输到上位机进行存储、分析和处理。传统的有线数据采集模式尽管稳定、可靠,但存在布线工作量大、可扩展性差、工程造价高等弊端。 近年来, 无线通信技术得到长足的发展, 基于 IEEE802.15.4 标准的ZigBee 无线传感器网络技术 [1,2] 因其具有功耗低、体积小、灵活性强等优点,所以在诸多领域得到广泛应用[3,4]。将ZigBee 无线传感器网络和数据库技术相结合,不仅能够有效对布线困难、人员不能到达区域进行数据采集, 还能够简化有线网络所带来的规划布线、线路检查和扩容等繁琐工作。文献 [5] 基于ZigBee 和 AT89S52 设计、实现了一套无线数据采集系统,但在稳定性和实用性方面还有待改进。本文根据工业现场数据采集的需求,设计并实现了基于ZigBee 技术的近距离、低成本、低功耗的无线数据采集系统。 1 系统架构 本文设计的无线数据采集系统架构如图 1 所示。该系统包括数据采集和接收处理两大模块,其中采集模块由ZigBee 无线传感器网络模块、单片机、数据采集传感器、LED 显示屏、按键等构成 ;单片机选用 STC15W4K16S4 实现数据采集、传输和人机交互功能,主要为按键识别和LED 显示控制;单片机片上 E2PROM 用以保存数据,如掉电时当前信息的保存或保存需要长久保存的数据;LED 用以实时显示采集数据。无线数据采集系统结构如图 1 所示。 采集模块采集到的数据由ZigBee 无线传感器网络传送到数据接收模块,接收模块再经串口送至 PC 机。PC 机完成数据的存储、查询和实时显示等功能,同时负责控制接收模块与采集模块的命令交互。在工程应用现场,待监测的生产区域通常需要采集多种类型的数据,单功能采集模块系统难以满足实际需求。因此利用基于ZigBee 无线传感器网络模块搭建数据接收处理模块,实现网络协调器和路由器功能,连接多个数据采集功能模块是一种有效的方案。扩展后的具有多种数据采集能力的采集系统如图 2 所示。 2 硬件设计 2.1 无线通信模块 本设计中的无线通信模块采用TI 公司生产的CC2530 做为核心芯片。基于 CC2530 芯片和 ZegBee 无线传感器网络协议设计网络通信节点,实现采集数据和系统命令的传输,具有使用灵活、成本低廉等优点。无线通信模块的硬件电路如图 3所示。 由图 3 可知,为得到良好的电源性能,确保通信稳定可靠, 采用去耦电容对模块电源进行滤波。采用高精度 32 MHz 的无源晶振作为时钟源来提供可靠无线收发基准时钟。 2.2 数据采集模块 数据采集模块以 STC15W4K16S4 单片机为核心, 该单片机具有 16 K 系统编程Flash 存储器和 42 K 的E2PROM 内存。数据采集模块与CC2530 无线通信单元相连,以此组建ZigBee 无线传感器通信网络。采集模块兼具传感器数据采集、人机接口和无线传感器网络通信等功能。设计的采集模块硬件电路实物图如图 4 所示。 2.3 数据接收模块 接收模块又称为无线传感器网络协调器,包括 ZigBee 无线传感器网络通信模块和通信接口。通信接口选用RS 232 方式,ZigBee 协议转换成 RS 232 协议后与PC 机无缝连接。数据接收模块兼具组建无线通信网络、实现 PC 机与数据采集模块之间命令交互等功能。设计的无线数据接收模块硬件如图 5 所示。 图 4 数据采集模块                  图 5 数据接收模块 3 软件设计 数据采集模块软件编程主要实现按键检测、显示驱动、 与 ZigBee 无线传感器网络通信交互等功能。数据接收模块软 件编程具有 RS 232 接口驱动、数据协议交互、ZigBee 无线传 感器网络协调器功能实现等功能。PC 机软件主要负责控制协 调器与数据采集模块交互、数据采集、存储、统计分析和数 据库管理。 MAC 地址作为各模块的身份ID,并在数据通信帧中添加该ID。接收模块收到数据后解析出ID、传感器数据或命令,按照ID…

摩登3娱乐怎么样?_WSN中锚节点部署方式对DV-Hop定位精度的研究

引 言 节点 位 置 的 信 息 是 无 线 传 感 网 络(Wireless Sensor Network,WSN)能够实现其应用的关键,如何实现节点的准 确定位一直是 WSN 应用中被关注的问题。WSN 中的节点主要 由锚节点和未知节点组成,其中锚节点指少量带有 GPS 定位 装置的节点,能实现精确定位,但未知节点则需要通过锚节点 来进行自身定位 [1,2]。由于锚节点需加装 GPS 设备,能量消耗 高,因此无法广泛使用。 目前 WSN 中的节点定位分为基于测距(Range-Based)和 无需测距(Range-Free)两种算法 [3]。基于测距的算法常用的 有 RSSI,TOA,TDOA,AOA[4],这种算法需要测算出相邻 节点间的距离,再计算周围未知节点的坐标,从而实现定位的 目的;无需测距的算法主要有 DV-Hop 算法 [5]、质心算法 [6]、 APIT 算法 [7],采用这些算法不需要测出节点之间的实际距离, 而是通过估算来获得未知节点的位置,但估算导致定位存在 偏差,需要进一步求精后才能获取准确位置。 文献 [8] 提出把锚节点通过人工部署为小区域的内切圆方 式,以提高节点定位的精度。文献 [9] 分析了 WSN 部署与能 耗的关系,通过对 DV-Hop 算法进行研究发现,锚节点位置 的不规则放置会对定位误差产生较大影响,在一定的 WSN 范 围内使用 DV-Hop 定位,可以通过锚节点规则性的部署来提高 定位的有效性,从而降低传感器定位误差。 1 DV-Hop算法及误差分析 1.1 DV-Hop定位算法 DV-Hop 算法的步骤如下: (1)锚节点向周边的未知节点广播信息,信息包中含有初始化为零的最小跳数项。未知节点收到信息包后,对最小跳数项加 1 再把整个信息包转发给下一个节点。 式中,(xi,yi) 为未知节点的坐标 ;(x1,y1), ,(xj,yj)为该未知节点所记录锚节点的坐标。 (4) 令公式(3)前面的(j- 1)个方程依次减去最后一个方程得到一个线性表达式 AX=b。 (5) 用最小二乘法解表达式可得 X=(ATA)-1ATb。 1.2 DV-Hop算法误差 在无线传感网络中,对于所有未知节点均使用跳数与校正值的乘积来表示距离,计算出的估计距离与真实距离存在很大偏差。有些文献提出引用各种迭代算法求出最接近真实值的未知节点的坐标,使得定位误差最小[10]。但迭代法的引入会增加定位的计算量,并增加WSN 的能耗。 存在较大误差的原因是锚节点位置的不规则放置,导致未知节点离锚很近或很远,从而加大了估算误差。 为了计算 DV-Hop 算法的误差,在仿真中采用了文献 [11]的误差计算公式: 其中,(x’,y’)和(x,y)分别表示未知节点的估算坐标和实际坐标,k 为仿真次数,R 为节点通信半径,N 为节点个数。 2 仿真环境与过程 2.1 仿真环境 仿真是在装有 Matlab2010 的Windows 7 平台上进行的。仿真环境参数选择见表 1 所列,正方形、均匀、交叉形式锚节点各坐标的选择见表 2 所列。 考虑到实际中 WSN 的传感器节点可能随机分布,而锚节 点可以按需要的方式进行人工部署。为了使仿真具有比较性, 每次计算误差时假设未知节点的位置固定,而锚节点则以随机、 正方形、均匀、交叉等方式部署。以 100 个节点为例:…

摩登3登录_基于PLC重铺机组远程监控系统的设计和实现

引 言 重铺机组用于公路的大面积连续翻修作业,具有就地加热、翻松(铣刨)、复拌、摊铺、整平功能,可一次成型新路面,旧路沥青混合料 100% 就地再生利用,具有节约资源、减少环境污染、作业时不封闭交通、经济和社会效益非常显著等特点[1]。但若想保证重铺机组的参数精确并提高生产效率, 对其进行在线监控是必要的,以便及时掌握重铺机组的运行状态和各种参数的变化[2]。 本文采用ZigBee 无线通信技术。随着通信技术快速发展,短距离无线通信技术已经成为通信技术中的一大热点。以无线局域网(WLAN)、蓝牙(Blue-Tooth)技术、WiFi 以及ZigBee 技术等为代表的各种热点技术相继出现 [3-6]。作为一种新兴的短距离无线通信技术,ZigBee 具有低功耗、低成本、使用便捷等显著的技术优势,广泛应用于工业控制、家庭自动化、智能农业和远程控制等领域,具有广阔的应用前景[7]。此外, 本文采用GPRS 技术进行远程数据传输。GPRS 网络具有网络覆盖率高,永久在线等优势,已经广泛应用于各个行业,而且这必将成为工业控制及远程监控等领域的发展趋势[7]。 1 总体方案设计 重铺机组远程监控系统总体方案设计如图 1 所示,系统 所需的组件如表 1所列。施工对象为由五辆重型铺路车组成的 机组,分别为 1# 加热机、2# 加热机、3# 加热机、铣刨机和 复拌机。每辆重型车上都安装有触摸屏。4 个 CIO100 模块分别安装在三台加热器和一台复拌机上,将一个从MAC310 模块安装在铣刨机上,通过串口连接分别取读五台机器的数据。同时每台机器上安装一个ZigBee 模块,分别与 4 台 CIO110 和 MAC310 的串口相连。由于三台加热机移动特性明显,所以主ZigBee 放在位置相对固定的铣刨机上,便于搭建机组近距离局域网。同时铣刨机上还安装GPRS 和GPS 模块,分别与另一块主MAC310 模块的串口相连。因此 4 台CIO100 上的数据通过 ZigBee 模块发送给从MAC310 模块,从MAC310 模块通过串口把数据发送给主MAC310 模块,主MAC310 把五台机器的数据和GPS 记录的机组位置信息通过GPRS 设备发送至云服务器,最后通过DView 界面显示。 2 系统结构 2.1 主控设计 主控由铣刨机、MAC310 模块、GPS 模块、GPRS 模块、ZigBee 模块组成,其结构如图 2 所示。由于系统需要 4 个串口进行数据传输,而每个MAC310 主控器有 3 个串口,故需要两个MAC310 模块。 2.1.1 MAC310 主控器 MAC310 是大连理工计算机控制工程有限公司自主研发 的冗余主控器的一个型号,该型号冗余主控器具备 2 路以太 网、3 路 RS 485 接口、4 路 DO(晶体管),其中 2 路高速脉冲 最大可达 300 kHz,5 路 IO 中断具备以太网、串口、设备等 多种冗余架构,内部资源丰富,适用于复杂冗余系统的主控。 MAC310 控制器获取的终端变量以及存放地址见表 2 所列。 2.1.1 MAC310 主控器 MAC310 是大连理工计算机控制工程有限公司自主研发 的冗余主控器的一个型号,该型号冗余主控器具备 2 路以太 网、3 路 RS 485 接口、4 路 DO(晶体管),其中 2 路高速脉冲 最大可达 300 kHz,5…

摩登3登录_基于ARM面向校园的综合签到管理系统

引 言 随着大学教育的普及,大学生的数量大大增加,同时因90后、95后受互联网等新媒体自由化思想的影响,大学普遍面临着到课率不高,逃课、缺课人数增加的困境,这是摆在教务管理人员面前的一道难题,抛开课堂互动性不高等问题, 签到系统的薄弱也是导致这种情况发生的原因之一,传统的签到无非是用纸签到或者点名,这两种方式无一例外的会占用同学、老师大量的时间。以200300人同时授课的校公共课为例,如果采用传统的点名方式,即使在学生能够完美配合老师的情况下,每个人仍需要10秒,即需要5分钟以上才能完成, 因此,在很多情况下,老师没有足够的时间点名,从而导致这些课变成了逃课、缺课的重灾区[1]。综上所述,一套行之有效的能够公平、高效地记录出勤情况的签到管理系统是大学普遍渴望配备的,通过新签到系统的使用,配合有力的奖惩措施, 能够在很大程度上减少逃课、缺课现象的发生,提升到课率。 1 功能分析 作为一款校园考勤系统,系统的典型用户有学生、授课教师和教务管理人员。对于学生,需要在上课前(或者下课后) 在签到机上签到;对于教师,需要能够很方便地查看某一天的考勤情况 ;对于教务人员,需要能够快捷的在所有考勤机上增加或删除一个学生的信息,并且在一个考勤机损坏的情况下,能够快速更换,并不影响其它考勤机的正常工作 [2]。 分析传统的指纹签到设备,我们发现,传统的指纹签到设备主要面向企业市场,强调打卡时间、排班、计时等企业管理所需要的功能,并且其考勤数据只记录在考勤机内,这意味着只能够单机考勤,对于几十名同学需要在课间 20 分钟内 1 能够快速签到,识别速度快,识别准确率高。 2 能够适应同一个学生不同时间在不同教室上课这一使用场景。 3 能够实现多机考勤,学校可在大教室里设置24个 4 能够在网页端查看实时的签到数据。 5 在考勤机发生损坏时,能够便捷替换。 2 硬件组成 硬件部分总体上分为考勤控制机和指纹识别终端两部分,考勤机采用基于ARM Cortex-A7 的树莓派,运行服务端程序,向下控制指纹识别终端,采集,存储数据,向上提供Web 管理接口。 2.1 基于树莓派的教室考勤控制机 鉴于需要存储指纹这种安全而敏感的信息,同时服务器不需要进行大规模的计算和存储,因此本地服务器采用处理器基于ARM Cortex-A7 的树莓派, 运行基于 Linux 的raspbain 操作系统[4],并且安装MySQL 数据库服务和TCP 服务端。服务器接入学校局域网,可由学校网络中心统一维护, 学生指纹库和签到情况等存储在服务器数据库中,系统通过TCP 服务与上层软件通讯,被授权的教务管理人员能够随时查看服务器上记录的签到情况并修改服务器端学生的信息。同时树莓派通过nRF24L01+ 芯片与下位多个指纹录入与识别设备无线通讯,实时获取各机的签到数据并加以处理和整合。 nRF24L01是由NORDIC公司出品的工作在 2.42.5GHz 2.3 基于STM32的指纹识别终端 本系统采用的指纹录入比对设备是微雪UART Fingerprint Reader,这是一款专用于二次开发集成应用的新型指纹开发模块,具有高速度、识别快、高稳定性等特点。 微雪 UARTFingerprintReader模块以 STM32F205高速数字处理器为核心,结合商用指纹算法,高精度光学传感器, 同时具有指纹录入、图像处理、特征值提取、模板生成、模板储存、指纹比对和搜索等功能,在指纹采集方面,该模块采用高精度光路和成像元件,使用时只需要手指轻轻一点,就能快速识别[7]。在识别比对方面,该模块采用STM32F205高级数字处理芯片作为处理器,低功耗,快速稳定,可满足教学楼人流量大、单位时间签到需求人数高的要求。 2.4 12864液晶显示模块 签到机与用户的交互模块为一块 12864 液晶屏,待机时显示当天的日期,星期,时间,教室号等信息,当用户将手按上指纹模块时,激活指纹模块,同时在液晶屏上显示出对比结果,例如:识别成功,XXX,欢迎您 ,签到失败,请重试! , 未到考勤时间,禁止签到! 之类的提示,方便用户使用。 3 软件系统设计 3.1 树莓派端的设计 树莓派端设计主要由Web 服务部分,数据库部分和无线传输服务部分组成。Web 服务部分通过服务器端运行的Web 服务,使教务管理人员能够便捷地通过 Web 浏览器管理,统计签到数据。数据库部分采用SQLlite 数据库存储同学们的各种信息,包括课程信息和指纹数据(或者指纹特征点数据) 等。无线传输模块通过使能树莓派系统自带的 SPI 总线,参考 nRF24L01+ 的参考手册配置无线模块的地址,实现 1 对多通讯,即一个树莓派控制机控制数个指纹录入比对设备。 3.2 指纹录入与识别设备的设计 指纹录入与识别设备也是主要由无线通讯模块、显示输出模块和指纹录入及识别模块组成,与上节中的无线传输服务部分类似,这里的无线通讯模块也采用nRF24L01+,通过STM32 使能自身的SPI 总线,参考 nRF24L01+ 参考手册,配 4 系统测试 为了检测该签到系统的可行性,对系统进行了指纹识别系统和树莓派控制系统的测试。我们以一个班级(33 人)为测试对象,采用一个控制机控制两个签到机,3 分钟内完成了签到过程,经检测,该系统达到了预期效果,系统的软件和硬件都运行正常,能够完成指纹注册、比对、删除等功能;同时能够完成服务器通过控制多个树莓派,进而调取并传送不同教室的数据库内容。系统稳定可靠,通过率高。 5 结 语 文章采用UART Fingerprint Reader 指纹识别模块和基于ARM Cortex-M3 处理器的 STM32 单片机以及基于ARM Cortex-A7 处理器的树莓派[9],设计了一款指纹识别签到系统。该签到系统简单、实用、便携、识别精准,支持多机联合考勤。通过无线模块能够快速、稳定收发数据,并可实时传送到服务器,达到人员出席的考核。实验结果表明系统的硬件和软件都运行正常,达到了预期目标。此外,该指纹签到系统预留了I/O 扩展接口,并能够根据用户的需求将其不断完善,相信不久的将来,基于ARM 嵌入式微处理器的考勤控制管理系统将会有很好的前景。

摩登3娱乐登录地址_智能鸡蛋盒的设计与实现

引 言 智能鸡蛋盒作为智能家居的一类产品,它解决了人们一直烦恼的忘记家里鸡蛋数量和忘记鸡蛋是否新鲜的问题。本论文实现了把鸡蛋数量和储存时间等数据传输到Android 客户端,并记录的功能,用户可以随时查看鸡蛋盒里鸡蛋的数量并检查鸡蛋是否新鲜。 1 智能鸡蛋盒的设计 1.1 硬件电路的设计 在设计硬件方案时,需要考虑以下几个因素: (1) 该智能鸡蛋盒在低温封闭的环境中工作,所以芯片以及其它元器件必须具备能在低温环境下正常工作的能力; (2) 由于是在冰箱内工作,所以无线网络要有一定的无线穿透能力。 经过一系列调研后,发现 RT5350 这款自带无线功能的主控芯片能满足本项目的基本要求,而其他元器件如电阻、电容、LED 灯也能在低温下正常工作。RT5350 是Ralink 公司在 2010 年左右推出的一款单芯片,其内部集成了基带处理器、射频、功率放大器以及一颗高性能的 MIPS 24Kc CPU 内核(最高主频为 360 MHz),一个基于 Ralink RT5350 的五端口百兆以太网交换机[1],所以仅需很少的外围元器件就可以实现低成本的2.4GHz 802.11n 无线产品。本文将RT5350 作为主控芯片, 采用距离传感器检测鸡蛋是否存在,不使用压力传感器的原因在于压力传感器的功能是检测压力大小,无法直接检测鸡蛋的有无,而距离传感器可以比较直接的检测出一定距离内是否有物体存在。 智能鸡蛋盒与手机客户端建立TCP/IP 连接,通过距离传感器检测鸡蛋数量,同时将这些数据通过引脚口的高低电平传递给主控芯片,主控芯片经过简单处理后将这些信息通过 TCP 传输给手机客户端。总设计框图如图 1 所示。 1.2 Android客户端的设计 智能鸡蛋盒Android 客户端整体的框架设计采用状态栏 ActionBar、 切换页面, 使用 ViewPager 与 Fragment 进行界面显示,使用ListView 和自定义的 Adapter 展示数据列表,采用popWindow 组件显示鸡蛋盒里鸡蛋存放的时间[2], 选择在 Android3.0 之后出现的 ActionBar 来实现标题显示, 为了能够让 ActionBar 的标题居中显示,我们采用自定义的ActionBar。 在底部栏的选项卡里,文字采用TextView,图片采用自定义的开源框架SVGView,原因在于传统的 Bitmap(位图)通过在每个像素点上存储色彩信息来表达图像,而SVG 是一个绘图标准。与Bitmap 相比,SVG 放大后不会失真,且Bitmap 需要为不同的分辨率设计多套图标,而矢量图则不需要。 2 智能鸡蛋盒的实现 2.1 硬件电路的实现 本软件设计是在虚拟机上的UBUNTU 系统上对OpenWrt 系统进行裁剪,并通过编写程序来完成。首先要构建编译环境,然后下载并配置 OpenWrt,完成基本的配置后,编译利用UBUNTU 系统自带的VI 编辑器编写驱动、程序以及MAKEFILE,最后对整个 OpenWrt 系统进行编译,编译完成后生成一个固件,利用串口调试助手SecureCRT 和tftpd32 软件将固件烧录到RT5350 芯片上[3]。 2.2 硬件程序的编写 硬件程序的编写需先打开设备驱动节点并初始化,等待 2.3 Android客户端的实现 Android 客户端的主要核心模块是和硬件通讯以及把硬件采集的数据显示到客户端。该模块主要技术包括Socket 通讯、Service 后台、BrodcastReceiver 通讯、Thread 线程以及Java 语言的反射技术。目前暂时定位 8 个鸡蛋的原因是Socket 通讯时,在硬件上的开发语言是 C,而C 的一个字符为 8 个字节,因此暂时定位发送一个通讯逻辑。根据需求分析,在与智能鸡蛋盒通讯时,我们需要采用 Socket 长连接通讯机制, Socket 基于TCP/IP 协议,为 Client、Service(C/S)连接方式。智能鸡蛋盒硬件电路作为 Server 端,而App 作为 Client 端, Client 需要保持长连接,就需要通过发送心跳包来与Server 保持长连接,并且 Android 系统的机制不能堵塞 UI…