标签目录:摩登3注册免费

摩登3官网注册_任正非送别荣耀:“离婚”就不要藕断丝连,要做华为最强的对手

本文为2020年11月25日任正非在荣耀送别会上的讲话。 我们将分别,曾经相处的十数年,心中有依依不舍的难受与兴奋。我们处在一个伟大的时代,也处在一个最艰难的时期,我们本来是一棵小草,这两年的狂风暴雨没有把我们打垮,艰难困苦的锻炼,过几年也许会使我们变成一棵小铁树。铁树终会开花的。 你们要走了,没有什么送你们的,除了秋风送寒吹落的一地黄叶。 为什么要剥离荣耀 华为在美国的一波又一波严厉的制裁下,使我们终于明白,美国某些政客不是为了纠正我们,而是要打死我们。 华为短期的困难,我们有能力克服。我们不因自己受难,而要拖无辜的人下水。 但分布在170个国家的代理商、分销商,因渠道没有水而干枯,会导致几百万人失业;供应商也因为我们不能采购,而货物积压,销售下滑,拖累股市。 他们有什么错,我们为什么不能承担一些牺牲,你们就是去与他们同甘共苦的,使干枯的渠道在水源未断时,补充满流水。 但你们不是救世主,要摆正对客户宗教般虔诚的心态,忠实地去维护客户利益,真诚地尊重对供应商的承诺。契约精神是你们立于不败的基础。 荣耀是生产中、低端产品的,剥离后的荣耀在智信公司的领导下迅速恢复生产,解决上、下游合作伙伴的困难。 我们曾经十数年的相处,我们近似严苛的管理,将你们一批天真浪漫年青的小知识分子改造成能艰苦奋斗的“战士”,过去我们有些方法过于生冷,对不起了。 今天要送别你们,同样是一样的依依不舍。正当秋风起,杏叶一地黄,出门也许是更冷的寒风,我们再不能为你们遮风挡雨了,一路走好,多多保重。 如何做好这件事 首先尽快地恢复渠道的供应,渠道干久了,小草枯了,就难恢复生命了。水、水、水,傣族为什么喊这句口号,说明渠道的水是救命的水。 全力拥抱全球化产业资源,尽快地建立与供应商的关系,供应是十分复杂而又千头万绪的问题,你们难度比任何一个新公司都大。 如何克服困难,就是摆在你们这些英雄豪杰们面前的事情。 坚持向一切先进的学习,包括向自己不喜欢的人学习。坚定不移地拥抱全球化,加强拥抱英、美、欧、日、台、韩的企业;美国是世界科技强国,它的许多公司很优秀,你们要坚定大胆与他们合作;同时也要与国内合作伙伴合作,与他们一同成长。 你们要保持已经形成的优良传统,干部、专家要全球化、专业化、多元化; 除了职员本地化外,要慎重地分权,以免你们不能全球一盘棋,使诸侯林立,拥兵自重,令不能行。 合理的淘汰机制,是激活整个队伍正向激励的补充,既要尊重人,又要考核科学,又要坚持责任结果导向,脱离大队伍后独立运营,会有难处的地方,慎重又坚决,又不能迁就。 坚持奋斗的目标与方向,坚持有所为、有所不为;坚持创新不动摇,决不允许队伍熵增。 一旦“离婚”就不要再藕断丝连 做华为全球最强的竞争对手,超越华为,甚至可以喊打倒华为,成为你们一个自我激励的口号。 坚持改进自己,在方向大致正确的路上努力前进;坚持使组织充满活力,员工具有坚强的意志与对胜利的渴望。坚决反对内部的腐败,反对一切贪污、盗窃的行为。 坚持过去有益的习惯与制度,流程科学全面的管好队伍,沉着镇定地前进。挫折会有的,不要惊慌失措。多发挥集体思维的力量,要大胆决策,又不要独断专行。团结一致向前进。 今天是我们的“离婚”典礼,我就不多说了。一旦“离婚”就不要再藕断丝连,我们是成年人了,理智地处理分开,严格按照合规管理,严格遵守国际规则,各自实现各自的奋斗目标。 不能像小青年一样,婚姻恋爱,一会热一会冷,缠缠绵绵,划不清界限。也不要心疼华为,去想你们的未来吧! 未来我们是竞争对手,你们可以拿着“洋枪”、“洋炮”,我们拿着新的“汉阳造”,新的“大刀、长矛”,谁胜谁负还不一定呢?我们对你们不会客气的,你们有人在竞争中骂打倒华为,他是英雄好汉,千万不要为难他们。 相处时难别亦难,秋风送寒杏叶黄,你们走好。 -END- | 整理文章为传播相关技术,版权归原作者所有 | | 如有侵权,请联系删除 | 往期好文合集 实锤!华为正式出售荣耀!2600亿!不再持有任何股份 又一华为程序员进了ICU:压垮一个家庭,一张结算单就够了! 90后马来西亚女孩闯华为 最 后 若觉得文章不错,转发分享,也是我们继续更新的动力。 5T资源大放送!包括但不限于:   免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

摩登3测速登陆_美国”天眼失明” 天文学家:只剩一只眼睛了,就是中国的FAST

12月1日,嫦娥五号成功实现月球软着陆,开启了月面采样并返回的探月旅程,就在全球都在关注这一太空探索的成功展开时,地球另一端的航天研究却遭遇了一场大灾难——美国的“天眼”阿雷西博望远镜被毁。 当地时间12月1日,阿雷西博望远镜所有方美国国家科学基金会(NSF)确认,继今年两次严重电缆事故后,望远镜悬挂的接收设备平台当天坠落并砸毁了望远镜反射盘(天线)表面,目前无人伤亡,但望远镜很可能已不能再使用,重建是目前最可行的方法之一。 21IC家了解到,建成于1963年的阿雷西博望远镜由底层直径305米的接收盘面,以及悬挂于此之上重达900吨的接收平台组成。在其57年的运行中,阿雷西博望远镜发现了太阳系以外的第一颗行星,还曾发射出强大的广播信号,用来与外星人进行交流。2016年,它首次探测到重复的快速射电暴——科学家们现在认为来自死亡恒星的神秘空间信号。 波多黎各大学行星宜居性实验室主任,长期在阿雷西博天文台工作的亚伯·门德斯(Abel Mendez)表示,阿雷西博和来自中国贵州的FAST望远镜,被誉为地球射电天文学上的“两只大眼睛”。“如果你在监测一个无线电频谱较弱的来源,你需要两个大的无线电望远镜:一个在白天指向某物,另一个在夜间指向某物。”门德斯补充说:“我们现在唯一在做类似事情的地方是中国(FAST),而且(它)比阿雷西博还要灵敏……如果失去阿雷西博,你就失去了一天24小时监控微弱无线电信号的能力,现在我们只有一只眼睛了。”   被毁后的阿雷西博望远镜

摩登3登录_嵌入式软件底层开发的框架陈述

转自 | 羽林君 在底层代码编写中,初始的框架设计总会面临选择,针对实际的硬件使用环境,大家对于使用的软件框架有很多选择,今天我简单描述一些比较常用的架构,让大家能够理解并选择合适的架构。  总述 1. 简单的顺序执行程序:这类写法是大多数人使用的方法,不需用思考程序的具体架构,直接按照执行顺序编写应用程序即可。 2.前后台执行程序:在顺序执行的情况上增添中断前台处理机制,配置顺序执行的后台大循环程序,组合成可以实时响应的程序。 3. 时间片轮循法:在前后台的执行架构上,通过计数器进一步规划程序,定时执行特定的片段。 4. 实时操作系统:实时操作系统又叫RTOS,实时性,RTOS的内核负责管理所有的任务,内核决定了运行哪个任务,何时停止当前任务切换到其  他任务,这个是内核的多任务管理能力。多任务 管理给人的感觉就好像芯片有多个CPU,多任务管理实现了CPU资源的最大化利用,多任务管理有助于实现程序的模块化开发,能够实现复杂的实时应用。 除了实时性,还有可剥夺内核,顾名思义就是可以剥夺其他任务的CPU使用权,它总是运行就绪任务中的优先级最高的那个任务。 1.简单的顺序执行程序 这种应用程序比较简单,一般作为初阶简单使用,实时性以及要求不太高的情况下,可以使用。程序的设计比较简单,思路比较清晰。但是主循环的逻辑比较复杂的时候,如果没有完整的流程图指导,其他人很难看懂程序运行逻辑。 下面写一个顺序执行的程序模型 int main(void) { uint8 TaskValue; InitSys(); // 初始化 while (1) { TaskValue= GetTaskValue(); switch (TaskValue) { case x: TaskDispStatus(); break; ... default: break; } } } 2.前后台执行程序 这种程序特点是,后台大循环中一直执行默认的程序,中断服务程序(ISR)产生相应中断标记,主程序运行与中断标记相关联的任务程序。一般实现有如下思路: 通过设置标志变量,然后在前台响应中断的时候进行对标志变量的置位或者复位,实现事件的信号获取,再在后台主循环进行中断所对应事物或者数据的处理,将程序流程转移到主程序。 前后台执行的程序 void IRQHandler(void){ if(GetITStatus == 1) { SysFlag = 1; GetITStatus = 0; }}int main(void) { uint8 TaskValue; InitSys(); // 初始化 while (1) { TaskValue= GetTaskValue(); switch (TaskValue) { case x: if(SysFlag == 1) { TaskDispStatus(); SysFlag == 0; } break; ... default: break; } } } 3.时间片轮循架构 时间片轮循法,大家看到它的时候,一般会将它与操作系统进行比较。不是说操作系统包含这种方法,而是在前后台程序中配合时间管理形成时间片轮循架构。 这种架构已经最大限度接近RTOS,时间管理,中断管理,任务管理,已经都有了,只不过RTOS会对内核进行更深入的修改,有针对delay延时的线程切换,抢占式任务切换这些更为复杂一些的功能等。 时间片轮循程序 时间片管理主要是通过对定时多处复用,在定时器计数,定时进行标志位的变化,继而主程序对标志真假的判断,实现不同时间不同任务状态执行。 因为此架构代码比较好,我适当进行详细描述。 step 1:初始化相应的定时器:注意设置定时器的间隔频率,可以按照芯片的性能设置。例如,设置定时中断为1ms,也可以设置为10ms,轮循架构中的定时器部分与操作系统的定时器部分具有一样的功能,中断过于频繁,影响主程的序执行效率;中断间隔过长,实时响应效果差。 2:针对定时器运行的任务设置一个函数结构体标志,用来在定时程序进行时间计数以及标志操作。 #define TaskTAB_NUM  6 //任务数量__packed typedef struct{ u8 flag; //定时标志 u32 numcount;//按照定时中断进行计数 u32 target; //设置的定时目标数值 int(*fun)(void);//设置定时执行的目标任务函数}TaskTimTypeDef step 3:建立一个任务表,通过结构体表的设置,确定任务执行的时间表。 在定义变量时,我们已经初始化了值,这些值的初始化,非常重要,跟具体的执行时间优先级等都有关系,这个需要自己掌握。 /*MdmSendTimTab任务函数默认周期,单位5ms,TIM7*/static TaskTimTypeDef TaskTimTab[TaskTAB_NUM] ={ {1, 0, 30000,      *Task00}, //Task00 3000数值是设置的定时目标值,如果觉得反应过慢,可以将此值设置小 {1,…

摩登3测速代理_意法半导体工业峰会:瞄准更精准、更高能效、更强通信

意法半导体2020年工业峰会于12月2盛大开幕!ST共带来 50多场技术推介会,展出100多个演示装置,并请专家现场为大家解答问题、提供建议。2020年工业峰会依然聚焦电机控制、电力能源、自动化三大应用领域。ST不仅想要展示产品和解决方案,还想要揭示决定创新方向的工业趋势。本次活动将让观众见证我们在推进更精准、更高能效、更强通信方面的最新动作。 2020年工业峰会:让电机控制更精准 用新评估板解决振动和噪声问题 在2020年工业峰会上,意法半导体将帮助工程师探索更高的电机控制精准度。许多人都知道,精准度在这类设计中至关重要。例如,在风扇中,知道转子的初始角度可以确保电机平稳起动。高精准度将有助于减少噪音和振动,还能提高系统工作可靠性,并降低故障几率,因此,在设计空调、吊扇、空气净化器或抽油烟机等产品时,开发团队设法提高系统控制的精准度。但是,寻找转子初始角度是很棘手的,并且可能需要昂贵的元器件。 在峰会上,ST将展出我们的技术创新中心新开发的一个评估板,这块评估板能够检测转子的角度。板子的开放式固件(X-CUBE-MCSDK)可以将源代码直接插入应用程序中,赢得了参观者的一致好评。另外,整个解决方案基于STSPIN32F0601,还集成一个STM32F031低功耗微控制器,为应用带来更高的能效和成本效益。此外,逆变器级使用与STGD5H60DF类似的IGBT沟栅场截止IGBT。设计人员可以查看我们的实现方法,并了解如何降低开关损耗。这块定制板不仅仅是一个简易开发工具,对于希望开发更安静、更可靠的产品的工程师,它也是一个值得借鉴的实例。 用多轴位置控制克服成本挑战 ST团队还将用实体交互式迷宫游戏向工程师演示如何取得更高的电机控制精准度。迷宫安放在一个较大的桌面上(60厘米x 35厘米47厘米或24英寸x 14英寸x 19英寸),然后,我们的工程师在每个桌角放置一台电机,用于倾斜桌面。用户将有机会控制电机,移动桌面,控制小球穿行迷宫。在四个电机中,每一个都由一个PCB控制,在PCB上有一个STDRIVE601栅极驱动器、一个STH270N8F7功率MOSFET和一个STM32F767ZI微控制器,这是一个物料成本较低的完整系统设计。这块板子的销售版(我们称为STEVAL-ETH001V1)使用的是STDRIVE101而不是STDRIVE601。 用户通过操纵杆控制系统。操纵杆内置惯性传感器,位置数据无线发送到X-NUCLEO-IDB05A蓝牙Shield板,也可以通过有线连接发送到Hilscher网络控制器。简而言之,操纵杆将位置数据发送到控制板。然后,控制板通过逆运动学算法计算每个电机应移动的位置,再把位置数据通过EtherCAT Real Time link发送到电机。这个演示装置解决了电机之间的互连问题,并演示了开发团队如何使用实时通信在工厂自动化环境中应用位置控制技术。 Efficiency 2020年工业峰会:让电力能源更高效 用碳化硅破解决汽车充电难题 在工业峰会上,我们将聚焦一个困扰电动车市场的新挑战。随着电动汽车的人气越来越高,逐渐成为主流交通工具,消费者希望充电更快。汽车厂商可以提供直观的手机应用、更好的电量显示器和快速充电器。然而,在谈到公共和私家充电站的尺寸时,工程师面临一个新的挑战:城市不想要体积庞大的充电桩,因为拥挤的市中心无法容纳它们。同样,市民希望充电器尽可能少占车库空间。市场既想要充电桩能拥有大功率,又希望它能保持小身材。 STDES-PFCBIDIR电动汽车三相双向功率变换器可以破解这个进退两难的困境。得益于SCTW35N65G2V碳化硅MOSFET,这款芯片可以用于开发能效更高的电源变换器。凭借其宽带隙材料,SiC MOSFET具有更高的开关频率,可以显著改进高压电源的能效。因此,工程师可以开发尺寸更小而功率更大的充电器。STDES-PFCBIDIR还使用了STM32G474微控制器,别的不说,就它的高分辨率定时器意味着工程师可以更轻松地驱动SiC MOSFET,并使用更小的无源元件,从而降低了材料清单成本。 用氮化镓升级手机充电器 随着USB PD充电技术的出现,消费电子产品也面临着类似的充电问题。新一代手机和平板电脑一般都支持功率需求更高的快充技术。然而,兼容这些新规格的充电器又大又贵,这解释了为什么厂家没有在产品附件清单中附赠快充适配器,用户只得另购功率更高的充电器,这种现象已经引起一些消费者的意见。移动设备制造商正在积极寻求更高效的快速充电器,然而硅半导体的技术极限阻碍了他们的努力。 为克服这一挑战,意法半导体将在2020年工业峰会上展出一个65 W快充参考设计。得益于我们的MasterGaN1芯片,演示充电器的功率密度将达到30 W /英寸。GaN晶体管的带隙甚至比SiC还宽,使其成为解决这个问题的主要候选技术。而且,MasterGaN1 系统级封装意味着 使用这种新材料比以前简单多了。最终,GaN充电器与小功率充电器差不多一般大,可以为当今的大多数手机和平板电脑快速充电。这项技术意味着产品厂商可以在产品附件清单中增加大功率充电器,而不会导致快递费上涨或换用更大的包装盒,从而可以降低运营成本和环境影响。 Communication 2020年工业峰会:自动化需要更强的通信技术 当人们想到自动化时,不一定会想到通信。在本届工业峰会上,ST将揭示更强的通信如何助力自动化。现场的一款演示中,两个机械臂彼此靠近,却不会发生碰撞问题,这是因为他们都有通信系统。ST还将展出LoRa智能橡胶采集装置。它可以安放在树上收取树液,当容器快满时,MCU向云端发送提示信息,优化橡胶厂的运营效率。最后,我们还将展示城市如何通过像 Nextent Tag一样的手环自动跟踪病毒接触者。展出的可穿戴设备将使用Bluetooth LE和Sigfox传播数据,同时保护人们的隐私。 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

摩登3登录网站_华为鸿蒙2.0手机开发者Beta版发布,这些设备可优先尝鲜鸿蒙

12月16日,华为正式发布HarmonyOS 2.0 手机开发者 Beta 版本,这意味着国产操作系统HarmonyOS生态正迎来发展中的重要里程碑时刻。与此同时,华为开启面向开发者的线上公测招募,截止时间到明年1月31日。   本次 HarmonyOS 2.0 公测设备支持华为P40 、P40 Pro、Mate 30、Mate 30 Pro、 MatePad Pro 设备,支持 OTA 升级。支持运行安卓应用。 从某种意义上来说,鸿蒙 OS 仅仅只是系统底层有所更改,也就是说原先华为手机所用的安卓 + EMUI 现在换成了鸿蒙 OS2.0+EMUI。需要注意的是,新科旗舰Mate40系列无缘首批。   据华为消费者业务软件部副总裁杨海松表示,按照目前进度,华为到明年所有华为自研设备都升级鸿蒙系统,消费者不需要购买新的设备体验鸿蒙系统。 他还宣布,明年华为也将发布基于鸿蒙系统的智能手机。 目前,华为官方已经开启Beta版本公测招募活动。开发者和合作伙伴们,可免费申请体验。 从12月16日开始,华为面向开发者提供两种开发者手机Beta版本尝鲜方式: 1)使用HUAWEI DevEco Studio中的远端模拟器,HarmonyOS官网下载DevEco Studio 2.0 Beta3版本即可获得; 2)使用专属OTA升级真机进行调测,点击本页面“我要报名”按钮申请,报名审核通过后将收到华为官方公测邀请邮件,根据邮件内容指引,即可得到OTA推送。 据了解,本次手机开发者Beta测试支持以下中国境内主制式手机及平板电脑: 手机:全网通(5G双卡)P40 、 全网通版P40 Pro、Mate30、Mate30(5G) 、Mate30 Pro、Mate30 Pro(5G),型号清单为ANA-AN00、ELS-AN00、TAS-AL00、TAS-AN00、LIO-AL00、LIO-AN00 。 平板电脑:全网通版、全网通版(5G)、WIFI版本的 MatePad Pro,型号清单为 MRX-AL19、MRX-W09、MRX-AN19。 华为此次宣布面向手机开发者开放完整的HarmonyOS 2.0系统能力、丰富的API(应用开发接口),以及强大的开发工具DevEco Studio等技术装备,开发者可访问华为开发者联盟官网,申请获取HarmonyOS2.0手机开发者Beta版升级。   华为方面表示,鸿蒙 OS 为万物互联而生,拥有更好体验,更多入口。作为万物互联时代的操作系统,HarmonyOS通过分布式技术,将多个物理上相互分离的设备融合成一个“超级终端”。例如,有了鸿蒙 OS,京东 App 可以运行在电视、甚至是冰箱等带屏设备,上亿设备将成为京东新入口;上百万辆车可以成为喜马拉雅 App 的入口;让更多智能终端成为银联的支付入口,比如 PC、电视等。   华为称今年已有美的、九阳、老板电器、海雀科技搭载鸿蒙 OS,2021 年的目标是覆盖 40 + 主流品牌 1 亿台以上设备。  据悉,迄今参与鸿蒙开发项目的开发者数量超过10万,硬件方面的合作伙伴从之前的5家增加到了10家。 此前,华为曾宣布,鸿蒙系统在 2021 年 4 月将面向内存 128MB-4GB 终端设备开源,2021 年 10 月以后将面向 4GB 以上所有设备开源。到 2021 年,华为智能手机将全面升级支持鸿蒙 OS 2.0。   你期待提前尝鲜鸿蒙OS 2.0吗? END 来源:网络整理 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

摩登3测试路线_电子行业十大定律,最后一个扎心了……

01 摩尔定律 英特尔(Intel)创始人之一戈登·摩尔(Gordon Moore)提出摩尔定律:当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。 戈登·摩尔 摩尔定律的核心内容主要有三个: 一是集成更多的晶体管,每隔两年单芯片集成的晶体管数目翻一番; 二是实现更高的性能,每隔两年性能提高一倍; 三是实现更低的价格,单个晶体管的价格每隔两年下降一倍。 摩尔定律被称为“半导体行业的传奇定律”,它不仅揭示了信息技术进步的速度,更在接下来的半个世纪中,犹如一只无形大手般推动了整个半导体行业的变革。 02 梅特卡夫定律 1993年,乔治·吉尔德提出梅特卡夫定律:一个网络的价值等于该网络内的节点数的平方,而且该网络的价值与联网的用户数的平方成正比。 该定律表明,一个网络的用户数目越多,那么整个网络和该网络内的每台计算机的价值也就越大。 用公式再来说明一下: 网络设备之间可能连接数 网络可能连接数C可以表示为: C = n(n-1)/2 (1) 网络的经济价值V表示为: V=C2 (2) 互联性驱动经济价值,这就能明白万物互联对运营商等企业的价值了。 03 吉尔德定律 乔治·吉尔德(数字时代三大思想家之一)提出吉尔德定律(又称胜利者浪费定律):最为成功的商业运作模式是价格最低的资源将会被尽可能的消耗,以此来保存最昂贵的资源。 吉尔德定律被描述为:在未来25年,主干网的带宽每6个月增长一倍,其增长速度是摩尔定律预测的 CPU 增长速度的3倍并预言将来上网会免费。 网络速度提升、价格下降,这不就是提速降费的惠民政策吗? 摩尔定律、梅特卡夫定律和吉尔德定律的三大趋势,共同推动着通信网络和信息社会飞速发展。 04 库梅定律 2011年,斯坦福大学的教授乔纳森·库梅(Jonathan Koomey)发现了库梅定律:单位运算的电耗量,每一年半就降低一半,从计算机诞生开始,都会持续下去。 21世纪,摩尔定律和库梅定律具有同等重要的地位。 库梅定律 vs 摩尔定律 库梅指出,从1946年第一台电子计算机ENIAC诞生之日算起,相同的计算量所需能耗一降再降。 微软和英特尔曾经联手对ENIAC的峰值功耗进行了计算——每秒运行5000次加法,所需功耗为150千瓦。如今仅仅是ENIAC时期的四万分之一。 ENIAC (占地面积达170平方米,重30吨) 物联网的基础是数据,如何采集世界的数据? 其中一个解决方案是利用库梅定律,建立遍布于世界的传感器网络,和计算机进行连接,建立自动化获得世界信息的范式,更好地收集世界的数据。 我们要建立大思维,正如我们的五官等感官都在收集信息供给我们处理,你的大脑会不断比较,从而建立一个关于世界的图景。 05 尼尔森定律 1998年,嘉卡伯·尼尔森(Jakob Nielsen)提出互联网宽带的尼尔森定律:高端用户带宽将以平均每年50%的增幅增长,每21个月带宽速率将增长一倍。 这也是指数化增长的曲线,这也是为什么现在很多大的电信公司,价格一降再降,但是仍然可以从中获得丰厚利润的主要原因。回顾宽带用户的发展情况其增长趋势很好地与该定律吻合。 06 库帕定律 马丁·库帕(Martin Lawrence Cooper)提出库伯定律:无线网络容量每30个月增加一倍。 库帕大哥大的发明者,被称为移动电话之父。 马丁·库帕 有人说,“库伯定律”比“摩尔定律”更加经典,更加坚不可摧。 从1897 年吉列尔莫·马可尼( Guglielmo Marconi)用无线电报传递莫尔斯电码,到今天4G通信技术的应用,这个定律都被认为是正确的。 而且更酷的是,无线射频传递过程中的信息量,不同于芯片上的晶体管,它不存在物理空间的极限限制,只要架设更多的线路,更多的带宽,搭建更多的终端,信息传输量就会永无止境地向上递增。 07 Edholm带宽定律 菲尔·埃德霍尔姆(Phil Edholm)提出Edholm带宽定律:人们对于无线短距离通信的带宽需求基本每隔18个月翻一番;为了满足日益增长的带宽需求,可以采用更先进的调制技术提高频带利用率,或者通过采用多种复用方式来增加信道容量。 Edholm带宽定律 在未来,无线网络的传输效率会和有线网络的传输效率逐渐趋同,无线网络和有线网络相互融合,是通信技术发展到一定阶段后必然会有的结果。 08 巴尔特定律 巴特尔定律:从一根光纤中导出的数据量,每9个月就会翻一倍,这也意味着在光纤网络中,数据传输成本每9个月的时间就会下降一半。 09 香农定律 1948年,美国工程师克劳德·香农(Claude Elwood Shannon)提出香农定律:如果把网络带宽比喻为车道宽度,那么网速就好比汽车在车道上行驶的速度;汽车在车道上行驶得快或者不快,要受限于车道宽度的大小,车道上正有多少辆汽车在行驶等诸多干扰性因素。 香农定律的数学公式 克劳德·香农在工程和数学界是一位响当当的人物,在20世纪30-40年代的工作为他赢得了“信息时代之父”( father of the information age )的称号。 克劳德·香农 10 墨菲定律 墨菲定律是一种心理学效应,由爱德华·墨菲(Edward A. Murphy)提出:凡事只要有可能出错,那就一定会出错。 墨菲定律自被提出之日起便被广泛应用于各个行业的安全生产管理中,通信行业也不例外。 举几个扎心的例子: 凡是有可能停电的基站,那就一定会停电; 凡是有可能发生断网的日子,那就一定会断网; 凡是有可能发生安全事故的工程施工,那就一定会发生事故。 “墨菲定律”是通信行业的铁律,不要有侥幸心理,请保持敬畏之心。 END 来源:U学在线,作者易安 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

摩登3咨询:_PLC与这7种设备的连接方式,一看就懂!

PLC常见的输入设备有按钮、行程开关、接近开关、转换开关、拨码器、各种传感器等,输出设备有继电器、接触器、电磁阀等。正确地连接输入和输出电路,是保证PLC安全可靠工作的前提。 1、PLC与主令电器类设备的连接 图1是与按钮、行程开关、转换开关等主令电器类输入设备的接线示意图。图中的PLC为直流汇点式输入,即所有输入点共用一个公共端COM,同时COM端内带有DC24V电源。若是分组式输入,也可参照图下图的方法进行分组连接。 ▲图1 PLC与主令电器类输入设备的连接 2、 PLC与旋转编码器的连接 旋转编码器是一种光电式旋转测量装置,它将被测的角位移直接转换成数字信号(高速脉冲信号)。因些可将旋转编码器的输出脉冲信号直接输入给PLC,利用PLC的高速计数器对其脉冲信号进行计数,以获得测量结果。不同型号的旋转编码器,其输出脉冲的相数也不同,有的旋转编码器输出A、B、Z三相脉冲,有的只有A、B相两相,最简单的只有A相。   ▲图2 旋转编码器与PLC的连接 如图2所示是输出两相脉冲的旋转编码器与FX系列PLC的连接示意图。编码器有4条引线,其中2条是脉冲输出线,1条是COM端线,1条是电源线。编码器的电源可以是外接电源,也可直接使用PLC的DC24V电源。电源“-”端要与编码器的COM端连接,“+ ”与编码器的电源端连接。编码器的COM端与PLC输入COM端连接,A、B两相脉冲输出线直接与PLC的输入端连接,连接时要注意PLC输入的响应时间。有的旋转编码器还有一条屏蔽线,使用时要将屏蔽线接地。 3、 PLC与传感器的连接 传感器的种类很多,其输出方式也各不相同。当采用接近开关、光电开关等两线式传感器时,由于传感器的漏电流较大,可能出现错误的输入信号而导致PLC的误动作,此时可在PLC输入端并联旁路电阻R,如图3所示。当漏电流不足lmA时可以不考虑其影响。 ▲图3 PLC与两线式传感器的连接 式中:I为传感器的漏电流(mA),UOFF为PLC输入电压低电平的上限值(V),RC为PLC的输入阻抗(KΩ),RC的值根据输入点不同有差异。 4、PLC与多位拨码开关的连接 如果PLC控制系统中的某些数据需要经常修改,可使用多位拨码开关与PLC连接,在PLC外部进行数据设定。如图4所示,为一位拨码开关的示意图,一位拨码开关能输入一位十进制数的0~9,或一位十六进制数的0~F。 ▲图4  一位拨码开关的示意图 如图5所示,4位拨码开关组装在一起,把各位拨码开关的COM端连在一起,接在PLC输入侧的COM端子上。每位拨码开关的4条数据线按一定顺序接在PLC的4个输入点上。由图可见,使用拨码开关要占用许多PLC 输入点,所以不是十分必要的场合,一般不要采用这种方法。 ▲图5 4位拨码开关与PLC的连接 5、PLC与输出设备开关的连接 PLC与输出设备连接时,不同组(不同公共端)的输出点,其对应输出设备(负载)的电压类型、等级可以不同,但同组(相同公共端)的输出点,其电压类型和等级应该相同。要根据输出设备电压的类型和等级来决定是否分组连接。如图6所示以FX2N为例说明PLC与输出设备的连接方法。图中接法是输出设备具有相同电源的情况,所以各组的公共端连在一起,否则要分组连接。图中只画出Y0-Y7输出点与输出设备的连接,其它输出点的连接方法相似。 ▲图6 PLC与输出设备的连接 6、 PLC与感性负载的连接 PLC的输出端经常连接的是感性输出设备(感性负载),为了抑制感性电路断开时产生的电压使PLC内部输出元件造成损坏。因此当PLC与感性输出设备连接时,如果是直流感性负载,应在其两端并联续流二极管;如果是交流感性负载,应在其两端并联阻容吸收电路。如图7所示。 ▲图7 PLC与感性输出设备的连接 图中,续流二极管可选用额定电流为1A、额定电压大于电源电压的3倍;电阻值可取50~120Ω,电容值可取0.1~0.47μF,电容的额定电压应大于电源的峰值电压。接线时要注意续流二极管的极性。 7、PLC与七段LED显示器的连接 PLC可直接用开关量输出与七段LED显示器的连接,但如果PLC控制的是多位LED七段显示器,所需的输出点是很多的。 ▲图8  PLC与两位七段LED灯显示器的连接 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

摩登3官网注册_5G时代高铁覆盖解决方案研究

本文来源:邮电设计技术 摘要 针对5G高铁覆盖面临诸多困境,从5G网络高频段、高功耗、高传输带宽需求、多普勒频偏、频繁切换、穿透损耗大等方面进行了分析。针对高铁场景特征及业务体验需求,研究并提出5G高铁覆盖解决方案和规划设计方法,为运营商在高铁场景快速部署5G网络提供技术支撑。 01 概述 截至2018年底我国高铁里程达2.9万km,2025年将达3.8万km,累计发送旅客人数已超70亿人次,在4G时代,各大运营商针对高铁覆盖属于品牌场景网络建设的重中之重。随着高铁用户规模增长及多样化的业务感知要求,在5G大规模建设和应用中,对5G高铁覆盖解决方案的需求是非常迫切的。 5G高铁覆盖方案将面临诸多困境,如5G网络高频段、高功耗、高传输带宽需求、多普勒频偏、频繁切换、穿透损耗大等。本文针对高铁多种场景,研究并提出对高铁的5G覆盖解决方案和规划设计方法,指导快速推进5G时代的高铁覆盖及精品高铁网络建设。 02 5G高铁覆盖的重要性及技术难点 2.1  5G高铁覆盖的重要性 高铁建设全面铺开,快速化、信息化已成为趋势:中国高铁里程占全球60%,成为中国人出行第一选择,累计发送旅客人次已超70亿,年增长率超35%。在高铁信息化及高铁用户快速增长的趋势下,5G时代运营商需要针对高铁覆盖拟定针对性的方案,在网络覆盖及用户体验上形成优势。 高铁乘客特征和运营商价值客户高度重合,是运营商的网络品牌的重要展示窗口:高铁运输能力大,单车容纳能力高,且环境舒适,用户业务使用比例高,整体业务需求较其他场景大;高铁用户中商务人士乘坐比例高,高端客户占比大,对于提升网络品牌具有重要意义,是5G时代网络建设的重点。 2.2  5G高铁覆盖技术难点 高铁普遍存在的三大挑战:多普勒频偏、频繁切换、穿透损耗大。由于5G主力的3.5GHz频段频率高于4G, 5G时代高铁覆盖更加困难,5G网络覆盖解决方案需要重点关注站点规划与布局、系统切换重叠区域设计、频率纠偏等方面,实现更好网络性能。 2.2.1   多普勒频偏影响接收机解调性能 5G无线通信系统要求峰值移动性支持≥500km/h,高速移动下的多普勒频偏(接受信号频率会偏离基站侧中心频点)会影响接收机解调性能,多普勒频偏在5G网络影响更大,3.5G相对1.8G频偏增大一倍,在3.5GHz情况下,列车速度达到350km/h时,上行多普勒频偏将大于2.2kHz,因此,在高频段、终端高速移动状态下如何克服多普勒频偏是5G网络关键技术难点之一。多普勒效解决方案主要为通过基站设备纠偏算法,进行用户的频率纠正来消除多普勒频偏移带来影响。 表1 不同频段的上行最大多普勒频偏 2.2.2   超高速移动导致切换区不足及频繁切换问题 5G无线通信系统的系统可靠性需求为99.999%,端到端时延<1ms,在列车时速350 km/h,切换区域超过90米,高速移动时所需要的重叠覆盖距离明显高于普通场景,且由于5G站距相对更小频繁切换问题明显。高铁速度350km/h、站距500米情况下,平均3s切换一次,终端用户在小区频繁切换,切换时带来的吞吐率体验下降明显,甚至掉话增加(如图1所示)。 图1 高铁小区切换示意 频繁的小区切换将极大降低用户的感知,成为5G网络关键技术难点之一。解决办法需要合理的无线网络规划和参数设置,实现更快的小区重选和合理的小区重叠区满足小区间切换要求,同时,通过小区合并可以减少小区间切换次数,提高速率性能及可靠性。 2.2.3   5G高频段的车体穿透损耗更大 5G无线通信系统的目前使用频段为3.5 GHz,自由空间损耗及车厢损耗较1.8 GHz频段高,其中自由空间传播损耗高6 dB,车体传播损耗高3~5 dB。CRH380A车厢整体穿透损耗平均值约20 dB,3.5 GHz频段穿透损耗更高约25 dB,不同车型采用材质差异,穿透损耗差异也很大(见表2),且基站到高铁的入射角越小,损耗越大,因此,在网络规划设计时入射角应控制在10°以上,基站到高铁最小距离为:80~200 m。 表2不同列车不同频段的穿透损耗(dB) 03 高铁多场景覆盖规划方案 3.1   规划目标建议 目前阶段高铁主要以视频、游戏、社交、办公类等eMBB业务为主。根据4G高铁数据统计,高铁业务模型与大网eMBB类似,文字、图片带宽需求变化不大,视频业务占比56%左右,未来业务较长时间内仍以“高清视频”为核心,带动流量增长。 5G初期,eMBB主要以2K视频+智能手机、4K视频+HDTV/VR为主要业务(见表3);其中2K视频是5G业务最小业务要求,高铁场景大部分时间处于200~350kmh高速运行,边缘速率规划建议按照4K视频业务需求:下行速率要求>50Mbps,上行速率可根据不同覆盖目标要求确定,初期建议UL>1Mbps,后续再分阶段考虑>5Mbps满足1080P视频上传要求。 高铁场景边缘速率规划建议:DL 50Mbps,UL 1 Mbps /5Mbps。 表3  eMBB业务带宽需求 3.2   链路预算分析 合理站址规划是网络质量基石,在网络规划选址既要充分考虑利用现有资源,同时也要考虑站址规划合理性。目前中国获取5G频谱资源为3500~3600 MHz, 根据业界内专家的初步评估,3.5 GHz频段的总损耗比1.8 GHz约大14 dB,主要表现在空间损耗、车厢穿透损耗及间隙发射带来损耗。基于目标边缘吞吐量的小区半径链路预算分析如表4所示,从表4可以看出,5G站址规划站距势必比4G网络更密。 表4 基于目标边缘吞吐量的小区半径链路预算 (2.5ms单周期) 从基于目标边缘吞吐量的小区半径链路预算分析,Cost-Hata模型与3GPP模型测算站距差异较大,按目前广东联通高铁4G现有存量站址站距600~800 m,至少需增加1倍以上站址方可满足5G网络覆盖要求,这对运营商来说是一项艰巨的任务,主要表现在站址选取、物业协调、工程建设、投资成本以及管道传输资源等方面。如何克服高频段损耗站点过密问题、降低建设成本,成为重中之重。 NR下行可以和LTE现网1:1共站,通过上下行解耦、DC双连接提升上行覆盖:从链路预算及速率满足情况来看,5G高铁覆盖主要表现为上行受限,小区边缘速率超过50Mbps,可以实现和4G现网站点1:1共站。从上行边缘速率情况来看,5G相对LTE FDD存在上行覆盖受限,需要上下行解耦或DC双连接提升上行覆盖,解耦后上行速率提升明显。小区实际覆盖半径可根据具体站点规划情况确定,在1:1基础上,进行个别站点补充满足规划目标。 图2给出了边缘吞吐率与小区半径的关系示意。 图2  边缘吞吐率与小区半径的关系 3.3   切换区域设计 由于5G无线通信系统的需求,系统可靠性为99.999%,端到端时延<1ms,在列车时速达350 km/h,双向切换区域范围较大。终端用户在小区频繁切换,切换时带来的吞吐率体验下降明显,甚至掉话增加,因此,减少小区间切换是提升高铁用户体验感知的关键。 5G系统需要的切换重叠区域测算如图3所示,A过渡区为信号到满足切换电平迟滞(~2dB)需要的距离,并且考虑防止信号波动需重新测量而影响切换的距离余量。B切换区域:时延1为终端测量上报周期+切换时间迟滞,时延2为切换执行时延,包括信令面及数据面执行时延。 图3  切换重叠区域测算示意 合理的重叠覆盖区域规划是实现业务连续的基础,重叠覆盖区域过小会导致切换失败,过大会导致干扰增加,影响用户业务感知,实际规划中,根据网络参数配置及时延要求评估,进行合理的切换区域设计。考虑单次切换时,重叠距离= 2* (电平迟滞对应距离+切换触发时间对应距离+切换执行距离)。 以常用配置(切换测量及判决160ms、切换执行20ms)为例,不同列车速度对应的重叠距离需求如表5所示,5G网络的小区间重叠覆盖距离150m,可以满足小区间切换重叠覆盖区要求。 表5 不同列车速度对应的重叠距离需求 小区合并应用建议:根据4G网络经验,综合考虑大网用户的容量和性能,合理选择RRU共小区方案,是减少频繁切换、提高用户感知的有效方案。5G网络中也需要继续采用RRU合并解决切换问题,5G采用hypercell(相同逻辑小区)技术小区合并后,广播信道共小区,形成一个逻辑小区,其业务信道TRP可独立调度,容量无损,有效保障用户感知。 Hyper Cell:基站侧基于上行信号判断切换,用户在同一个逻辑小区内移动时不感知TRP变更。 3.4   高铁线路覆盖方案 线路站址规划:高铁线路覆盖站址建议以“之”字形布站,以最大限度保证列车两边座位都有比较好的覆盖,尤其是在列车会车的时候能保证车内通信质量最佳。 站轨距:据无线信号传播特点,信号入射角越小,穿损越大,通常建议入射角大于10度,考虑到天线水平波瓣在90度方向增益约为0dBi,为保证不出现塔下黑,根据链路预算,建议站点离铁轨距离不超过200m。 站高:站高设计需保证信号直射径能从列车玻璃穿透,减少信号从车顶穿透几率,天线相对铁轨高度在20~45m为宜;方位角:不同入射角对应的穿透损耗不同,入射角越小,穿透损耗大。实际测试表明,当入射角小于10°以后,穿透损耗增加的斜率变大,因此方位角设置中应保证天线与铁路夹角大于10°;下倾角:5G高铁场景天线下倾设置原则, 天线垂直波束最大增益方向指向边缘。 入射角与基站离铁轨的距离关系示意如图4所示。 图4 入射角与基站离铁轨的距离关系示意 建议相对站高在20~45m,站点离铁轨距离在35~120m,保证列车两边座位都有比较好的覆盖。 高铁线路覆盖设备选型建议:高铁场景中2T/4T无法满足一般站间距规划,8T可满足500~650m站间距覆盖,32T/64T可满足相对较大覆盖距离(见表6)。32T/64T理论上覆盖好于8T,容量高于8T,但小区合并、波束赋形算法难度更大、要求高,需要根据高铁线路场景及业务情况,并综合考虑成本、技术成熟度,确定建设方案,从目前厂家设备情况来看,8T方案的成熟度最高。 表6 不同类型设备覆盖对比 3.5   高铁隧道覆盖方案 高铁隧道由于隧道空间狭小,列车速度快,生产风压及安全性考虑导致无法采用常规天线覆盖,建议隧道内采用泄露电缆进行覆盖(见图5),两侧洞口采用定向天线朝外延伸,增大室外宏站与隧道区域的重叠覆盖带区域,保证切换的顺利完成。 图5  高铁隧道覆盖示意 表7给出了覆盖方案的对比。 表7 覆盖方案对比 漏缆及POI情况分析及建议:存量13/8漏缆规格无法支持3.5 GHz,最大截止频率为2.9GHz,无法满足5G演进,采用5/4漏缆可支持3.5GHz,优选2T2R漏缆方案。3.5GHz漏缆的2种部署方案,建议采用漏缆替换方案。 a) 800M~3.6G全带漏缆替换存量漏缆:无额外安装空间要求,对sub3G KPI存在恶化风险。 b) 新增3.5G only窄带漏缆:指标更好,不影响sub3G KPI,但有额外安装空间要求,安装位置导致穿损更大。 存量POI无法支持3.5GHz,也只支持2.6GHz频段60MHz,NR3.5GHz需新增或替换POI,建议隧道组网使用POI+漏缆,3家运营商共建共享,降低建设难度及成本。 3.6 …

摩登3内部554258_荣耀与微软签署全球PC合作协议,Windows 10成为荣耀笔记本电脑官方操作系统

【2020年12月24日】今日,知名科技品牌荣耀宣布与微软签署全球合作协议。荣耀将在全球范围内采用微软Windows 10作为荣耀笔记本电脑官方操作系统。Windows 10 是全球最受欢迎的Windows 操作系统,在 Windows 10 的支持下,荣耀笔记本电脑将在办公、学习、生活、娱乐等全场景为消费者提供更出色的用户体验。 荣耀CEO赵明先生表示:“荣耀很高兴与微软达成全球范围内的合作,通过主流的操作系统和技术,给消费者带来设计卓越、性能强大、体验一流的PC产品。荣耀坚持以消费者为核心,持全面开放的态度和全球产业链合作伙伴一起创造属于每个人的智慧新世界。” 微软大中华区OEM事业部总经理黄逸群先生表示:“Windows 10 是一个多元且强大的平台,为我们的 OEM 合作伙伴提供了向世界输出创意的灵活工具。微软希望通过Windows 10平台,予力OEM 合作伙伴们不断推出创新产品,把最新技术推送给用户,让他们无论何时何地都能去创造、学习和沟通。” 荣耀一如既往地重视对研发和前瞻性技术的投入,坚持把品质、创新和服务作为战略控制点,为全球消费者带来领先和创新的产品及体验。 2021年1月,搭载微软Windows 10和英特尔 Core i5处理器的荣耀笔记本电脑MagicBook Pro,将继中国市场热销后登陆海外市场,为海外消费者带来耳目一新的创新体验。 MagicBook Pro采用酷炫而雅致的金属机身,90%以上的超高屏占比和三面4.9mm的微边框设计,带来宽广的视野和强大的全屏生产力;沉浸式环绕立体声音效,配合对称的双扬声器设计,带来观影、游戏时身临其境的畅快体验;指纹电源二合一,开机登录一步到位,超大触控板让操控更加准确自如;多屏协同再升级,电脑手机之间实现无感连接,电脑可直接打开手机上的文件,带来生产力的直线提升;连续11小时工作的绝佳续航能力,轻松为多线程、多任务的高负荷运载保驾护航。MagicBook Pro的全屏生产力,让工作生活的每个瞬间都更加高效、畅快。 与此同时,荣耀下一代MagicBook系列产品也将于2021年1月在中国首发。请随时关注荣耀中国官网及“荣耀智慧生活”官方微博,了解更多荣耀与微软等合作伙伴相关动态。

摩登3新闻554258:_程序员又背锅?美团外卖声明“杀熟会员”是技术原因,软件定位缓存导致配送费不准

前几天的“美团杀熟外卖会员”事件你听说了吗? 简单地说,有人爆料自己开通美团会员后,以前常点的一家外卖店配送费由平时的2元变为6元。不仅是一家店这种情况,一部开通美团外卖会员的手机,附近几乎所有外卖商户的配送费,基本都要超出非会员配送费1~5元不等。 此事引发网络热议,新华社还点名批评美团吃相太难看,在舆论压力下,美团终于给出了解释,说并不是杀熟,而是由于“软件存在定位缓存,错误地使用了用户上一次的历史定位,与用户实际位置产生偏差,导致配送费预估不准”。 这解释一出来网友们就炸了,都什么年代了,还定位缓存,难道是村里刚通网吗? 有人质疑这个解释看起来像“我们没错,你们也没错,是程序员写的代码有问题”。 这么看来,美团的技术小哥们要努力了。 有人说国内的互联网公司技术就是不行,一个外卖app都定不好位,看人家国外的马斯克都牛上天了。 不过大多数网友表示这分明是甩锅给技术,程序员也太惨了吧?明明每次打开美团都重新定位,怎么会突然有缓存呢? 稍微学过点计算机的都应该知道这公关在胡说八道,程序员真的万年背锅侠,和部队的炊事班一个待遇,背着大黑锅看别人打炮。 需求文档就这么写的,结果现在怪码农。 这是把程序员当老实人了?还是以为他们不上网?要不抓个包看看有没有缓存? 程序员表示:偏差不存在的,都一个地方,返回参数都一样,能算错吗?话虽如此,锅还是得背。 有人说,这个解释把用户当傻子,也把新华社当傻子,这话术就像程序员大爷回复二愣子产品时一样,就欺负你听不懂技术又验证不了。 总之,不接受这样的解释。 当然,也有不少人觉得这个解释说的通。有人说缓存确实会出现这个问题,而且明明从其他地方可以薅的钱没必要从配送费上薅,太明显了。 有人说确实碰到过配送费变高的情况,选完地址就好了。 定位有时候真的不太准,新骑手总是找不到自己的位置。 而且之前爆料的人并没有显示配送位置,有可能是带节奏炒作。 有人说,有些手机会关掉GPS来省电,因此不排除这种可能。就算编理由,美团也不会编一个没有逻辑的声明出来,毕竟这种基本的把戏骗不到人。 还有人说,不只美团,很多app都有这个问题,开始显示本地估算的所有费用,最终付款肯定按照后端复核的来。 美团的解释很难去验证真伪,毕竟网友们不是程序员,对技术也不太了解,自然是官方说什么就是什么。对于相对强势的企业而言,相对弱势的消费者只有选择权——选择用或者不用这个软件。但如果所有软件都有这个问题,用户们也别无选择。 无论真正的原因是什么,希望互联网大厂们别老想着怎么薅用户的羊毛,把心思放在做好产品上,自然会有更多收益回报。 关于美图的这个声明,广大程序员们是怎么看呢?欢迎在文章下面留言写下你的看法~ 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!